
Multiagent Planning via Partial Coordination in

Markov Games
Undergraduate Honors Thesis Submitted to Brown University’s

Department of Computer Science

Written By: Daniel Ritter
Thesis Advisor: Michael Littman

Reader: Amy Greenwald
Support: Mark Ho

April 2021

1 Introduction

Multiagent systems have a broad range of applications, and have seen exten-
sive research and interest in recent years. Both learning and planning algorithms
for multiagent environments have been proposed for problems ranging from com-
munity energy allocation [11] to traffic congestion [12] to robotic swarm control
[9]. However, planning and learning in multiagent systems can be difficult, par-
ticularly because the number of possible joint actions increases exponentially
with the number of agents. In this work, I present a framework for centralized
multiagent planning in Markov games called a model game. This framework
decomposes a multiagent environment into a set of models, each of which only
considers some subset of the total set of agents. These models are then combined
into a solution for the complete environment. After describing this approach, I
show, using a simple gridworld game, that it can match the reward achieved by
planning in the complete environment in cases where agent rewards are suffi-
ciently ‘decoupled’, as explained in Section 5. I also show that this method can
scale to games too large to plan in directly, and still achieves high reward if the
rewards are sufficiently decoupled.

2 Related Work

Several prior papers have explored different methods of scaling/decomposing
multiagent planning problems. Guestrin, Koller, and Parr [6] frame the problem
as one large, single-agent Markov Decision Process (MDP) and then decompose
the joint value function into local approximations that only depend on a few

1

agents. These local value functions are then used for rapid, decentralized plan-
ning. However, their method only applies to fully cooperative games. The same
authors then extend this approach [7] to handle cooperation between different
agents at different timesteps, at the expense of requiring hand-crafted value rules
to determine the decomposition of joint values across agents. There has also
been a great deal of similar work in classical, deterministic planning [2, 3, 1]. The
work of Brafman and Domshlak [1], in particular, bears some similarity to my
approach, as the authors define precise notions of coupling between agents and
show a relationship between the complexity of planning and the coupling factor
of a problem. However, their coupling measures are designed for deterministic
planning problems, and do not have immediate analogues in the probabilistic
case I deal with here. Lastly, there has been some work on characterizing cou-
pling between players in the game-theory literature [13], which defines coupling
as a predefined transformation of a player’s rewards that makes each player
‘dependent’ on the outcomes of some other players. This formulation is useful
and relevant, but also quite distinct from the one I use here, where coupling is
intrinsic to the environment or joint policy of agents.

3 Background

This section describes the underlying models central to my work.

3.1 Markov games

A Markov game is a generalization of the standard Markov Decision Process
that allows for multiple agents to act in one environment. Formally, a Markov
game is a tuple G = 〈I,S,A, T,R〉, where I = {1, 2, ..., N} is an ordered set
of agents; S is a set of states; A =×i

Ai is the joint action space—the cross-
product of individual agent action spaces; T : S × A → ∆(S) is a transition
function; and R : S×A → RN is a joint reward function. Critically, the rewards
and transitions are both functions of the joint actions of all agents, which means
that the environment from any single agent’s point of view is non-stationary.
A joint policy for a Markov game is a mapping π : S → ∆(A) that defines a
distribution over joint actions for each state. An individual policy is a mapping
πi : S → ∆(Ai) that defines a distribution over actions for some particular
agent i.

We can express the value of a joint policy π(~a | s) as:

V π(s) =
∑
~a

π(~a | s)[R(s,~a) +
∑
s′

T (s′ | s,~a)V π(s′)], (1)

where V π(s) is vector of length |I| representing the expected payoff for each
agent.

Similarly, the state–action value function for π can be written as:

Qπ(s,~a) = R(s,~a) +
∑
s′

T (s′ | s,~a)V π(s′). (2)

2

3.2 Solution Concepts

Because Markov games are non-stationary environments, and the actions of
any one agent depend on those of the others, there is not a unique optimal
policy as there is in a single agent MDP. Instead, the optimal behavior for an
agent is defined in terms of its expectations for the behavior of other agents.
One ‘solution’ to a Markov game can then be viewed as a policy that realizes a
particular equilibrium among the agents. The relationship between an agent’s
expected reward and a particular kind of equilibrium can be formalized using
the notion of a solution concept. A solution concept is a summary operator,⊗

: (S × A → R|I|) → R∗, that summarizes a state-action value function into
a set of payoffs. We use the notation⊗

~a

Q(s,~a),

where the solution operator returns payoffs based on the state–action values
for the given state s. Solution operators are analogous to the max operator in
single agent RL. In the multi-agent setting, however, solution operators may be
associated with multiple possible values. As an example, the solution concept
for a Nash equilibrium can be written as:

Nash~aQ(s,~a) =

{E~a∼∏i πi
Q(s,~a) | Eai∼πi

Qi(s, ai,~a−i) ≥ Ea′i∼π′iQi(s, a
′
i,~a−i),∀i, a′i,−i}.

There may be multiple policies that satisfy these constraints, which may also
have different expected values. Selecting among equilibria within a particular
class is then one of the additional challenges of multiagent environments. These
solution-concept operators can be used in place of the max operator in the
standard Bellman equations, giving rise to a variety of different multi-agent
learning/planning updates. This procedure is equivalent to replacing the value
function in Equation (2) with the solution operator applied to the Q-values of
the next state. The Q/V functions defined for some solution concept

⊗
can

then be written as

Q(s,~a) = R(s,~a) +
∑
s′

T (s′|s,~a)
⊗
~a′

Q(s′,~a′), (3)

and
V (s) =

⊗
~a

[R(s,~a) +
∑
s′

T (s′ | s,~a)V (s′)]. (4)

3.3 Planning in Markov Games

Given a solution concept,
⊗

, we can treat Equation 4 as an assignment rule
and use it in a generalized form of value iteration. This algorithm is identical

3

to the single agent version, but each V (s) is updated according to Equation 4
and V (s) itself is a vector representing the values for each agent, rather than a
scalar. The convergence guarantees for this algorithm depend on the particular
solution concept and game. In past work [5, 10, 8], the authors have provided
experiments with varying operators and some have proven convergence for cer-
tain kinds of operators or particular games (such as minimax solution concepts,
coordination or zero-sum games). Greenwald and Hall [5] also showed empirical
convergence on several games that do not fall into these categories.

Throughout the experiments in this work, I use a correlated equilibrium so-
lution concept, which is not guaranteed to converge, but does so empirically
in all games presented here. There are two main reasons I chose this solution
concept. First, correlated equilibria are significantly more tractable to com-
pute than a Nash equilibria in the general case. A correlated equilibrium can
be solved as a linear program in polynomial time, while computing a Nash
equilibrium is known to be PPAD-complete [4]. An approach like Friend-Or-
Foe Q-Learning [10] can reframe the problem as a two-player, zero-sum game,
which makes computing a Nash significantly more tractable. However, doing so
requires assuming a priori that particular agents are either fully oppositional or
fully cooperative. A correlated equilibrium avoids this assumption, at the cost
of requiring access to (or at least estimates of) the Q values of all agents, rather
than just one.

Secondly, the environments used in the experiments are variations of the
Stag Hunt social dilemma, which has both payoff-dominant and risk-dominant
equilibrium strategies. Because we are interested in coordination among agents
to maximize reward, we want a solution concept that will converge to the payoff-
dominant strategy. By solving for a correlated equilibrium, and specifying a
utilitarian objective function (explained in more detail below), this solution
concept will generally converge to the higher reward, cooperative strategy.

3.4 Correlated Equilibria as Linear Programs

Consider a normal form game with i players, P = {p1...pi}, and individual
strategies Sp1 ...Spi . The set of joint strategies is then S =×i

Spi . Let S−i
denote the set of joint strategies excepting one player pi, and ∆(S) be a distri-
bution over joint strategies. ∆(S) is then a correlated equilibrium if it satisifies
the following constraints:∑

s′∈S−i

upisj ,s′∆(sj , s
′) ≥

∑
s′∈Si

upisk,s′∆(sj , s
′),∀pi ∈ P,∀sj , sk ∈ Spi (5)

where upis is the utility for player i given joint strategy s. Essentially, no agent
has any incentive to deviate from the equilibrium if every other agent follows
it. These constraints can be transformed into a linear program of the following

4

form: ∑
s′∈S−i

(upisj ,s′ − u
pi
sk,s′

)∆(sj , s
′) ≥ 0,∀pi ∈ P,∀sj , sk ∈ Spi∑

s∈S
∆(s) = 1

∆(s) ≥ 0,∀s ∈ S.

In addition to these constraints, the linear program can optimize for an objec-
tive function. There are several common objective functions, four of which are
described by Greenwald and Hall [5]. In my experiments, I used social welfare
as the objective function, which attempts to maximize the sum of all agent’s
utilities:

max
∆(s)

∑
pi

∑
s∈S

∆(s)upis .

In the context of a Markov game, we can treat a single state as a normal form
game, using the state–action values of each agent as the utilities. An equilibrium
for the state can be computed using the linear program described above. The
expected values for each agent under that equilibrium can then be used to update
their respective state–action values. It is important to note that the equilibrium
solution to this linear program is not necessarily unique. As a result, solutions
computed independently may end up being incompatible. Because of this fact,
the equilibrium in my experiments is computed by a centralized planner, and
then all agent’s Q-values are updated according to that central equilibrium.
This approach avoids coordination problems, where two agents might compute
different but valid equilibria for the same state, leading to conflicting behaviors.

4 Model Games

As the number of agents in a Markov game grows, the size of the joint-
action spaces increases exponentially. As a result, planning across many agents
can rapidly become intractable. To avoid this intractability, I introduce the
model game framework, which computes plans in a variety of partial models
of the environment, and assigns the policies generated in those models to each
agent. This approach allows for partial coordination among agents, enabling
good performance in environments with separated tasks.

Formally, a model game, MG = 〈G,Gk,
⊗
〉, consists of a ground game G, a

set of game models Ĝ ∈ Gk, and a solution concept,
⊗

. The model game can

be additionally augmented with a cost function, C : G|I|k → R|I|, which can
represent costs associated with a particular choice of model for each agent (such
as a penalty based on the complexity of different models).

A game model, Ĝ ∈ Gk, is a partial model of the environment, 〈IĜ ,SĜ ,AĜ ,
TĜ , RĜ〉, where each element of the model is defined using up to k agents, k ≤ |I|.
IĜ is the set of agents included in the model, SĜ is the set of states, AĜ is the
joint actions of the included agents, and TĜ , RĜ are the modified transition and

5

I S A T R
{1} p1 A1 p1 ×A1 → ∆(p1) p1 ×A1 → R1

{2} p2 A2 p2 ×A2 → ∆(p2) p2 ×A2 → R1

{3} p3 A3 p3 ×A3 → ∆(p3) p3 ×A3 → R1

{1, 2} {p1, p2} A1 ×A2 {p1, p2} × (A1 ×A2)→ ∆({p1, p2}) {p1, p2} × (A1 ×A2)→ R2

{1, 3} {p1, p3} A1 ×A3 {p1, p3} × (A1 ×A3)→ ∆({p1, p3}) {p1, p3} × (A1 ×A3)→ R2

{2, 3} {p2, p3} A2 ×A3 {p2, p3} × (A2 ×A3)→ ∆({p2, p3}) {p2, p3} × (A2 ×A3)→ R2

Table 1: Example models for a three-player gridworld. The agent set I is
{1, 2, 3}. The state space S is {p1, p2, p3}, where pi is agent i’s (x, y) position
on the grid. Here, k is limited to 2, so the ground game is not included as a
model.

reward functions. If the set of states SĜ is different from S, the states in the
ground game, then an additional function F : S → SĜ is necessary to map states
in S to a corresponding state in SĜ . This function allows the policy learned in
the model to be used in the true environment. Table 1 shows an example of
the game models for a simple three-player game. The state space is defined in
terms of the positions of the agents, so the function F for that example would
simply return the positions of the agents that are in the given model, leaving
out the others.

The example in Table 1 also illustrates an important point implicit to the
structure of the model game. For this framework to be applicable, the effects of
individual actions on immediate transitions and rewards have to be separable
from the effect of the joint actions as a whole. This is necessary so that the
transition and reward functions for the models can be defined only in terms of
subsets of agents. For the gridworlds in Table 1 and in the experiments, this
separability is clear. The position of an individual agent in the grid is determined
primarily by its own actions, barring collisions, and so the transition function
can be adjusted to include only the effects of certain agents, which amounts
to ignoring possible collisions for those agents left out of the model. For an
arbitrary Markov game, though, there is not a general process for creating
these model transition and reward functions. Defining that process requires
some access to the internal structure of the dynamics for a given environment.
In environments where this information is not available, another option is to
assume a predefined, fixed policy π−IĜ for all agents not included in the model.

The transition and reward functions for Ĝ can then be defined as the original
functions conditioned on π−IĜ .

4.1 Planning

Planning in an environment with a model game involves three steps: plan-
ning on individual game models, estimating the true values of combinations of
game models, and computing a distribution over combinations of models.

6

4.1.1 Planning on Individual Game Models

The first step is to plan on each game model Ĝ ∈ Gk. Because the game
models are defined in terms of subsets of agents, the total cardinality of Gk
will be

∑k
j=1

(|I|
j

)
. Planning on a game model can be done using any planning

algorithm for Markov games, as each game model is just a simplified version
of the ground game. For each model, planning will generate a joint policy
πĜ : SĜ → AĜ , defining actions for agents in IĜ . At the end of this step, each
game model will have an associated joint policy.

4.1.2 Estimating Joint Policy Values

Because the game models leave out some agents present in the ground game,
there is no guarantee that a policy that achieves a high reward in Ĝ will also
achieve that same reward in G. To determine which model to use for each agent
in the ground game, then, we have to estimate the true value of each model
policy πĜ in G.

To estimate this value, we have to look at each combination of models avail-
able to the agents (excluding those where an agent’s model does not include

the agent itself). Each agent has a total of
∑k
j=0

(|I|−1
j−1

)
models to choose

from (the subsets up to size k of I that include a particular agent). The set
of joint model combinations is then the cross product of those sets, giving a
total of (

∑k
j=0

(|I|−1
j−1

)
)|I| possible combinations. While this set is quite large,

the estimated return of each joint strategy can be evaluated quickly. For each
combination, I estimate its value with Monte Carlo sampling, averaging over a
large number of trials in the ground game.

4.1.3 Computing a Model Equilibrium

Given the estimated returns for each joint model combination, the choice
of models for an agent can be viewed as a normal-form game, where the set
of individual strategies is the collection of the agent’s available models. The
estimated values are then used as the payoffs in this game. To determine a
distribution over the joint model combinations, compute an equilibrium over this
stage game. Any equilibrium concept could be applied, but in the experiments
we use a correlated equilibrium with a utilitarian objective function, to maximize
the reward among agents who can cooperate.

To apply the final result to the ground game for testing, we sample from
the joint-model equilibrium, and then use the policy from each agent’s assigned
model to determine their actions.

5 Measures of Task Coupling

The performance of the model game’s solution is dependent on the structure
of the rewards in the environment. If joint policies that achieve high reward
require the cooperation of many agents, that is, if the rewards are highly coupled,

7

then the model game’s solution will not necessarily provide high reward. In the
opposite case, where cooperation is only necessary between a few agents, the
model game’s solution can perform well. Formalizing this notion of coupling
is then useful in analyzing the circumstances and environments in which the
model game will find high performing solutions. However, finding a single way to
completely express this kind of agent interaction is difficult. Instead, I describe
a potential way to formalize some aspects of coupling, and describe the benefits
and drawbacks of it.

One approach to capturing the importance of coordination between agents
is to define it using the relationship between the values of the model game and
ground game solutions. We can write this measure as a minimization problem
over k, where k is the maximum number of agents that can be included in one
model:

min k : V πground(s0) = V πMk (s0), (6)

where πMk
is the joint policy produced by the model game when limited to

models of k agents or fewer, and πground is the joint policy produced by planning
in the ground game. The coupledness of an environment (and whatever solution
concept has been chosen) is then defined as the smallest value of k, that is, the
minimal number of coordinating agents, that can still match the values of the
ground-game solution.

Using the same quantities, we can also write a related form of Equation 6
based on the concept of the price of anarchy in standard game theory. The
price of anarchy is defined for a set of equilibria Seq, set of strategies S, and
objective function f as

max
s∈S

f(s)

min
s∈Seq

f(s)
. (7)

This ratio captures the amount of lost utility (based on f) between the optimal
centralized strategy and the worst-case strategy in some set of equilibria. Sub-
stituting in values for the model and ground games in place of f , we can write
a similar ratio between the ground game and model game:

max
i

max
πground

V
πground

i (s0)

min
πMk

V
πMk
i (s0)

. (8)

This version represents the proportion of reward lost between the ground game
and model game solutions for a particular value of k and agent i, instead of mea-
suring the minimal k needed to match the ground game value. By maximizing
across i, we get the worst case loss of reward for any agent in the environment.
Rather than being defined with respect to an optimal central controller, as the
price of anarchy is, the ratio is specified in terms of the equilibrium solutions
available in the ground game. Both these formulations provide methods for
quantifying the coupledness of a particular environment/solution concept pair
and relating it to the rewards produced by the model game. However, comput-
ing either one requires access to the set of valid ground game solutions, which

8

can be intractable to compute. Different notions of coupledness that are policy
agnostic, or approximations of these quantities that are tractable to compute,
would then be more useful in assessing the potential efficacy of a model game.

6 Experiment 1

Figure 1: Experiment 1 Gridworld

This experiment involves a very simple gridworld environment based on the
stag-hunt social dilemma in game theory. In this environment, pictured in
Figure 1, the agents (shown as colored circles), can move into adjacent, non-
diagonal squares. If any agent moves into the same square as a hare or a stag,
they ‘capture’ it and receive a reward, causing the episode to terminate. Both
the stag and the hare are fixed in place. If an agent captures a hare, it receives
5 points. If one captures a stag, it receives 20 points. Agents in the squares
immediately surrounding a stag will also receive the 20 points if any one agent
captures it. Lastly, if two agents try to move into the same square, the collision
is resolved probabilistically, with each agent having a 50 percent chance to move
to the square or stay in place.

While moving onto a square containing a hare is deterministic, barring col-
lisions, moving onto a square containing a stag is not. When an agent attempts
to capture the stag, it only succeeds in moving into the stag’s square with some
probability p, defined as part of the environment. This probability roughly cor-
relates with the coupledness of rewards in the environment. If p is quite small,
then it requires many agents attempting to capture the stag for them to succeed.
If p is large, then a single agent is like to capture it alone.

By varying p, we can make the environment more or less coupled, and exam-
ine the performance of the model game across different conditions. The results
of this experiment are shown in Figure 2a. The model game was used with k
values of 1 and 2. As a baseline, I used the result of planning directly in the

9

0.0 0.2 0.4 0.6 0.8 1.0
Single Agent Capture Probability

20

30

40

50

60

Av
er

ag
e

Su
m

 o
f R

ew
ar

ds

Ground Game
Model Game (K=2)
Model Game (K=1)

(a) Sum of Undiscounted Rewards vs. Capture
Probability

0.0 0.2 0.4 0.6 0.8 1.0
Single Agent Capture Probability

0

50

100

150

200

250

Ru
nt

im
e

(s
ec

on
ds

)

Ground Game
Model Game (K=2)
Model Game (K=1)

(b) Runtime vs. Capture Probability

Figure 2: Results for Experiment 1. Value iteration was run until convergence
on each game model and the ground game (γ = .5). Each combination of
game models was run for 500 episodes in the ground game to estimate their
true returns. The average rewards were estimated from 200 test episodes after
planning was complete.

ground game. For each model, and for the ground environment, value iteration
with a correlated equilibrium solution concept was used for planning. At very
low probabilities, it is ideal for each agent—in both the ground game and the
game models—to go directly to its nearby hare because the odds of any one
agent getting the stag are so low that the expected value of going for the stag,
even with all 3 agents cooperating, is still lower than that of capturing the hare.
The opposite holds in the high probability domain, where, regardless of whether
or not there is cooperation, it is still ideal for each agent to go to the stag.

The interesting region lies from around p = .20 to p = .40, and demonstrates
the differences in planning between the ground game and model game. The
ground game planner switches to a cooperative strategy around p = .20, seen
in the jump in the summed rewards from 15 to 60. At this point, all 3 agents
cooperating can capture the stag consistently enough to outweigh the 5 points
they can gain from the hare. The model games, however, do not switch to a
cooperative strategy until a higher probability. The reason for this difference
is because, from the model game’s perspective, there is only ever coordination
between k agents, while the ground game can coordinate between all of the
agents. The k = 1 and k = 2 model games then change to a cooperative
strategy only when the probability is high enough for 1 or 2 agents, respectively,
to capture the stag consistently. In sufficiently decoupled conditions, the model
game can match the performance of the ground game, and do so in a drastically
smaller amount of time. Figure 2b shows the runtime for each probability value,
and the model game is significantly faster than the ground game in every case.
For environments where tasks are known to be relatively decoupled, planning
with a model game can provide a boost in efficiency with minimum loss in value.

10

6.1 Coupling

Because this three player environment is small enough to compute the ground
game solution, we can evaluate the coupling formulation described in Section 5.
Figure 3a shows the discounted sum of rewards for the ground and model games.
The value is equivalent to V π(s0), which can be written as

∑∞
t=0 γ

t × Rt. The
formulation in Equation 6 then corresponds to the sections of Figure 3a where
the model game matches the expected value of the ground game. The games
with probabilities from .00 to around .15, for example, would have a coupling
factor of 1 because the k = 1 model game can achieve the same value as the
ground game. The games with probabilities from .15 to .20 would have a cou-
pling factor of 3, because neither model game achieves the same value. Those
from .20 to .40 would have a value of 2, since the k = 2 model game matches
the ground game, but k = 1 does not. After .40, the coupling factor would be
1, as k = 1 is again able to match the ground game value.

Figure 3b shows the other formulation based on the price of anarchy (Equa-
tion 8).1 The ratio is one (or very close to it) at all the regions where the model
games match the rewards of the ground game, and spikes severely in the prob-
ability region where the ground game outperforms the model games, showing
how those games are more tightly coupled and require more coordination. The
drop down to one between .30 and .40 happens at the point where it becomes
worthwhile even for a single agent to go for the stag. At that point, the policy
for every model is to go for the stag. No matter what combination of models is
picked, then, every agent will go for the stag, and the resulting value will match
that of the ground game solution.

7 Experiment 2

Because model games only consider partial models of the ground game, which
are generally logarithmically smaller than the true environment (assuming k <
|I|), they can scale to significantly larger games that include greater numbers
of agents. Experiment 2 illustrates this idea. The environment dynamics, goals,
rewards and planning process are the same as described in Experiment 1, but the
game itself is significantly larger (shown in Figure 4). There are 5 agents, rather
than three, and 22 possible positions, rather than 10. The optimal strategy (in
terms of maximizing the sum of rewards) is for each pair of agents on the left
and right to try and capture their respective stags, and for the agent in the
middle to try and capture either stag. The non-cooperative strategy is for each
agent to capture its respective hare. Experiment 1 had around 700 states, with

1Technically, the denominator in Equation 7 involves enumerating the set of correlated
equilibria and then separately maximizing over those for a particular agent’s value function.
Here, I simply used the equilibrium computed to maximize the sum of all agent’s rewards.
However, this game is simple enough that the strategy that maximizes the sum of rewards is
also optimal for each individual agent. The values in the numerator are based on the estimated
payoffs in the true environment, which explains why there is a small amount of variance in
the graph.

11

0.0 0.2 0.4 0.6 0.8 1.0
Single Agent Capture Probability

16

18

20

22

24

26

28

30

Su
m

 o
f D

isc
ou

nt
ed

 R
ew

ar
ds

Ground Game
Model Game (K=2)
Model Game (K=1)

(a) Sum of Discounted Rewards vs. Capture
Probability

0.0 0.2 0.4 0.6 0.8 1.0
Single Agent Capture Probability

1.0

1.1

1.2

1.3

1.4

1.5

Co
up

lin
g

Fa
ct

or

Model Game (K=2)
Model Game (K=1)

(b) Price of Anarchy Coupling vs. Capture
Probability

Figure 3: Discounted Sum of Rewards (γ = .5) and Coupling Factor for Exper-
iment 1

Figure 4: Experiment 2 Gridworld

a joint action space size of 125. This game has approximately 3.16 million states
and a joint action space size of 3125. Planning in the complete environment,
given its size, is completely intractable. While we cannot compare to the ground
game solution in this case, we can see the same trend in the sum of rewards for
the model game with k set to 1 and 2. These results are shown in Figure 5.
In the lower probability regions (excepting very low probabilities where even
the ground game solution would go for the hare), both model games achieve
relatively low reward, choosing an uncooperative strategy. As the probability
increases, and the environment becomes less coupled, the rewards increase, as it
becomes more and more worthwhile for agents to cooperate, even within game
models. Given significantly decoupled rewards, then, a model game can handle
much larger games, with far greater numbers of agents, by breaking down the
exponentially large joint-action space into relevant subgames.

12

0.0 0.2 0.4 0.6 0.8 1.0
Single Agent Capture Probability

20

40

60

80

100

120

Av
er

ag
e

Su
m

 o
f R

ew
ar

ds

Model Game (K=2)
Model Game (K=1)

(a) Average Sum of Undiscounted Rewards vs.
Probability

0.0 0.2 0.4 0.6 0.8 1.0
Single Agent Capture Probability

20

30

40

50

60

Av
er

ag
e

Su
m

 o
f D

isc
ou

nt
ed

 R
ew

ar
ds

(b) Average Sum of Discounted Rewards vs.
Probability

Figure 5: Average Sum of Rewards vs. Capture Probability for Experiment 2

8 Discussion

The model-game planning framework can produce effective solutions in large,
partially-cooperative environments, provided that tasks/rewards are sufficiently
separated and require coordination between small numbers of agents. However,
this work has shown only a basic version of this framework to showcase its costs
and benefits. There are numerous potential extensions and improvements to
this idea that are worth briefly sketching out.

For example, the model game currently requires a centralized planner that
computes plans for every model and assigns a model to each agent. How-
ever, many multiagent problems require decentralized planning methods, where
agents plan independently to solve some common task. Extending model games
to operate in a decentralized fashion would broaden their applicability to a sig-
nificantly larger class of problems. This extension could take several different
forms. One option would be to have each agent maintain a set of individual
game models, and have some kind of message-passing scheme to coordinate on
which model to use (or even to transfer models between agents). This pro-
posal would create some problems with coordinating plans between agents, like
those mentioned in the section on correlated equilibria, but could still work with
certain equilibria or games that converge in decentralized settings.

The current approach for estimating the values of joint combinations of mod-
els could also be made more efficient. The space of possible model combinations
grows quite rapidly, and so evaluating every one (which is the current approach)
could be intractable in very large games. Methods for pruning the set of game
models could avoid this problem. As an example, in the stag-hunt gridworld,
agents would likely only need to coordinate with agents close by in the grid,
and so limiting game models to those where two agents close to each other are
included might be an effective heuristic.

Model games can be used for scaleable and efficient planning in environments
with well-separated tasks. Their efficiency comes from considering only partial

13

coordination between agents, bypassing planning in the complete environment.
Using a gridworld game based on the stag-hunt social dilemma, I showed how the
performance of a model game compared to planning in the true environment, as
well as how the model game can scale well beyond standard planning algorithms.
Although there is not yet a clear formal measure for game coupledness separate
from an already learned policy, for environments where this task separation
seems to hold, model games can be an efficient and effective solution.

References

[1] Ronen Brafman and Carmel Domshlak. “From One to Many: Planning
for Loosely Coupled Multi-Agent Systems”. In: Jan. 2008.

[2] Ronen Brafman et al. “Planning Games”. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence. 2009.

[3] Ronen Brafman et al. “Transferable Utility Planning Games”. In: Jan.
2010.

[4] Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. “The
Complexity of Computing a Nash Equilibrium”. In: SIAM Journal on
Computing (2008).

[5] Amy Greenwald and Keith Hall. “Correlated-Q Learning”. In: Proceedings
of the Association for the Advancement of Artificial Intelligence. 2003.

[6] Carlos Guestrin, Daphne Koller, and Ronald Parr. “Multiagent Planning
with Factored MDPs”. In: In NIPS-14. The MIT Press, 2001, pp. 1523–
1530.

[7] Carlos Guestrin, Shobha Venkataraman, and Daphne Koller. “Context-
Specific Multiagent Coordination and Planning with Factored MDPs”.
In: Eighteenth National Conference on Artificial Intelligence. Edmonton,
Alberta, Canada: American Association for Artificial Intelligence, 2002,
pp. 253–259. isbn: 0262511290.

[8] Junling Hu and Michael Wellman. “Nash Q-Learning for General-Sum
Stochastic Games”. In: Journal of Machine Learning Research (2003).

[9] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Guided
Deep Reinforcement Learning for Swarm Systems. 2017. arXiv: 1709 .

06011 [cs.MA].

[10] Michael Littman. “Friend-Or-Foe Q-Learning in General-Sum Games”. In:
Proceedings of the International Conference on Machine Learning. 2003.

[11] Amit Prasad and Ivana Dusparic. “Multi-agent Deep Reinforcement Learn-
ing for Zero Energy Communities”. In: 2019 IEEE PES Innovative Smart
Grid Technologies Europe (ISGT-Europe) (2019), pp. 1–5.

14

https://arxiv.org/abs/1709.06011
https://arxiv.org/abs/1709.06011

[12] Sejoon Lim and D. Rus. “Stochastic distributed multi-agent planning
and applications to traffic”. In: 2012 IEEE International Conference on
Robotics and Automation. 2012, pp. 2873–2879. doi: 10.1109/ICRA.

2012.6224710.

[13] Mo Wei and Jose Cruz. “Role of cooperation in coupling game theory”.
In: International Journal of Control - INT J CONTR 80 (Apr. 2007),
pp. 611–623. doi: 10.1080/00207170601126701.

15

https://doi.org/10.1109/ICRA.2012.6224710
https://doi.org/10.1109/ICRA.2012.6224710
https://doi.org/10.1080/00207170601126701

	Introduction
	Related Work
	Background
	Markov games
	Solution Concepts
	Planning in Markov Games
	Correlated Equilibria as Linear Programs

	Model Games
	Planning
	Planning on Individual Game Models
	Estimating Joint Policy Values
	Computing a Model Equilibrium

	Measures of Task Coupling
	Experiment 1
	Coupling

	Experiment 2
	Discussion

