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Abstract

Machine learning models, most notably deep neural networks, have grown rapidly in

size and complexity in recent years. While this increase in capacity has brought sig-

nificant gains in performance across a variety of tasks, it has also rendered the process

by which these models make decisions opaque. In response to this issue, a significant

amount of recent research (under various headings such as interpretable machine learn-

ing, explainable AI, etc.) has focused on explaining model decisions. Within natural

language processing (NLP), this concern is particularly salient. Recently, NLP models

have been significantly scaled up, the largest models having tens or hundreds of billions

of parameters. These larger models have achieved impressive gains in performance

across many linguistic domains and tasks, prompting extensive research into how they

generate text and learn representations of language. Providing human comprehensible

explanations of how these models generate their outputs, though, is a difficult problem.

Furthermore, evaluating and comparing the quality of different explanation methods is

itself a non-trivial problem. In this work, we use a variety of approaches to evaluate

the quality of explanations, and particularly feature importance methods, across several

different large language models (LLMs). The works that proposed these methods for

evaluation generally applied them to a limited set of models, usually the base BERT

model [14] or one of its variants. This leaves an open question: Do feature importance

explanations still work equally well across language models of differing architec-

tures and sizes? By applying these approaches to models with different structures and

sizes, we can assess the robustness of explanation methods to different architectural

choices. We additionally assess the robustness of several explanation methods to adver-

sarial attacks, and propose a novel variant of a previously published method to generate

adversarial examples that more closely resemble their original inputs. We find that vary-

ing the size of language models has little impact on the quality of explanations, but that
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the performance of explanation methods on different architectures of similar size varies

more drastically. This variation across different model architectures highlights the diffi-

culty of using these explanation methods in practice, as both the best method to use and

the accuracy of its results are difficult to know a priori.
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1 | Introduction

1.1 Motivation and Contributions

As increases in computing power and hardware advances have enabled the train-

ing of increasingly complex machine learning models, the scope of real-world

machine learning applications has broadened. Companies across various indus-

tries have begun using highly complex models for important applications such as

facial recognition [3], machine translation [23], and financial services [18]. Gen-

erally, the validity of these approaches point to the performance of the models,

e.g. accuracy on held-out evaluation data. High performance on evaluation data

is, from this view, assumed to lead to high performance in the real-world context

of the application, as it provides an unbiased estimate of future predictive perfor-

mance (under the assumption that future data comes from the same distribution as

the held-out data). However, looking purely at aggregate metrics of performance

obscures important failure cases. Various forms of bias and discrimination [4, 11],

decision-making based on spurious correlations [38], and many other problematic

behaviors have all been well documented across machine learning models [40].

None of these problems are apparent from a model’s performance on held-out

testing data, but nevertheless raise deep concerns about the legitimacy of applying

machine learning to any important decision-making processes.

Within natural language processing, these problems are particularly pressing. Re-

cently trained language models are truly enormous, often with hundreds of billions

of parameters [10, 27, 13]. In addition, these models are trained on billions of ex-

ample sentences, generally scraped from the internet [16]. For any one of these

large language models, we have poorly understood internal behavior governed by

a massive number of parameters, combined with an underlying dataset that fre-

1
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quently contains information that is factually unreliable, prejudiced or offensive

[20]. Add to that the numerous potential industrial applications of these LLMs,

and recent investment to realize them [61], and suddenly all the issues described

above are magnified.

One approach to helping understand and identify these kinds of issues is the sub-

field of machine learning interpretability, which focuses on explaining model de-

cisions in a human-comprehensible way. Explanations of model behavior can

be used to identify problems like bias and verify that algorithmic decisions only

make use of factors that human decision-makers would consider ‘valid’ for a par-

ticular task (bias in this context being the use of ‘invalid’ factors, e.g. race or sex,

for prediction). While there has been prior work applying general interpretabil-

ity methods to LLMs, and proposing some language specific explanations, the

evaluation of the quality of these explanations has generally been limited to mod-

els of similar architectures and scales. To understand how effective explanatory

tools may be in practice, where architecture and scale may vary widely, we must

evaluate explanations on a broader class of language models.

In this work, we undertake a systematic evaluation of the quality of different ex-

planations for language models, focusing in particular on feature attribution meth-

ods. We examine how the quality of different explanation methods, in terms of

their ability to accurately capture the behavior of the models they explain, changes

across models of different scales and architectures. We also evaluate the extent to

which we can generate adversarial examples for different model explanations, i.e.

inputs that produce similar outputs using similar features, but have different ex-

planations. In practice, these models may be applied to a variety of models, so

measuring the quality of explanations in a diverse array of contexts is critical to

assessing and understanding their practical utility.

2
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1.2 Thesis Outline

Section 1 has outlined the motivation and goals of this work. The remaining

sections are organized as follows:

• Section 2 provides a review of concepts in natural language processing and

interpretable machine learning. Further, we provide a detailed overview of

the large language models and interpretability tools considered in this thesis.

• Section 3 describes the experimental setups used to evaluate explanation

quality for large language models.

• Section 4 presents the experimental results, and discusses some notable

findings and relationships between the different explanation methods and

classes of models.

• Section 5 is a discussion of those results and their implications for the ap-

plication of interpretability methods to large language models.

3



2 | Background and Related Work

This section provides an overview of topics in natural language processing and

machine learning interpretability that are relevant to the later experiments and

results.

2.1 Natural Language Processing

Natural language processing (NLP) is a subfield that sits between artificial in-

telligence and linguistics, and focuses on how to use and analyze language data

computationally. Problems in NLP have been approached in a variety of distinct

ways, but for the purposes of this work, we consider machine learning approaches,

that solve a task by learning a model based on some example training data. In par-

ticular, the experiments and results here focus on transformer architectures [57],

a relatively recent kind of neural network language model. There are many other

machine learning methods for NLP, such as recurrent models like LSTMs [26];

however, in recent years, transformers [57] have become the most prominent and

widely used [63].

In this section, we first provide a brief overview of how input text is transformed

into a numerical format (such that it can be handled computationally), and then

a description of the transformer architecture. Following that, we describe the

paradigm of pretraining and finetuning that has emerged in NLP, where large mod-

els are pretrained on a generic language modeling task and then specialized with

task-specific data later.

4
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2.1.1 Data Preprocessing and Word Embeddings

Given some input text, we have to transform the raw text into a form that a ma-

chine learning model can operate on. This is generally done in two steps: tok-

enization, and embedding. The tokenization step converts the text into a list of

individual text tokens. For example, the text "they are happy" could be tokenized

into the list ["they", "are", "happy"]. It is worth noting, though, that the tok-

enization does not have to be based on whitespace, and that different tokenization

schemes may result in very different token lists. The models considered in this

work, for instance, generally use ‘subword tokenization’ which will frequently

split a word into multiple tokens (e.g. "happy" becomes ["hap", "py"]).

The embedding step maps the individual tokens from the tokenization to vectors

ei ∈ Rd, called word embeddings. The mapping from a token to an embedding is

deterministic, and predefined as part of the model architecture. The set of tokens

with unique embeddings is called the model vocabulary. The dimensionality d

of each embedding is also a hyperparameter of the model. Any token not in the

model vocabulary is mapped to a special embedding vector for ‘unknown’ tokens.

The final input to the model for some text string s is then a list of embeddings

(e1, e2, ...et), where t is the number of tokens representing s after tokenization.

The particular values of the embedding vectors are often trained jointly with the

model itself, so a token’s embedding will change throughout training to optimize

the training objective, along with the rest of the model parameters.

2.1.2 Transformer Models

With the ability to place data in a usable numeric form, we can now describe the

transformer architecture. The first implementation of transformers in [57] was a

sequence-to-sequence model; a model that takes some text as input, and produces

5
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different text as output. Specifically, the architecture performed machine transla-

tion, taking as input text in some source language, and producing the translation

of that text in a target language. The transformer consists of two components, an

encoder and a decoder. The encoder and decoder both are composed of a series

of ‘attention blocks’, each of which applies a self-attention operation to the input

embeddings, generating a new set of transformed embeddings as outputs. The en-

coder transforms the input embeddings into a new contextualized representation,

where embeddings for individual tokens can include relevant information from

other tokens. The decoder then uses the output of the encoder to autoregressively

generate an output sequence.

More formally, an attention block takes as input a sequence of embeddings e =

(e1, ..., et), with ei ∈ Rd (for the first block in the transformer these are the word

embeddings described above, while later blocks take in the output of the preced-

ing blocks). It produces as output a new set of embeddings (c1..., ct), often of the

same dimensionality d as the inputs, although this is not required. The first step of

the block is the self-attention computation, which is parameterized by three weight

matrices, WK ∈ Rdk×d,WQ ∈ Rdk×d,WV ∈ Rdv×d. dk, dv are hyperparame-

ters specifying the dimensions of these intermediate outputs. These matrices are

applied independently to each embedding, producing three new sets of matrices

K,Q,V, with

Ki = WKei

Qi = WQei

Vi = WV ei.

These three matrices are called the keys, queries, and values, respectively. Each

of these matrices also have an intuitive interpretation as performing a kind of

6
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search. The query vectors (or rows of the query matrix Q) act roughly like search

queries for information that is important to a particular token. The key vectors

represent how relevant each token is to different queries. The dot product of a

key vector Ki and a query vector Qj then measures how relevant some token i

is to another token j. The value vectors V are the actual transformed content of

the tokens (like the content of a search result irrespective of its relevance), and

are weighted by the search relevance/dot product so that ‘more relevant’ tokens

have a larger impact on the resulting output. More formally, we can compute the

overall attention value from a token i to another token j as the following:

attention(i, j) =
exp(Qi ·Kj)∑
j exp(Qi ·Kj)

It is simply the dot product of the query vector for token i with the key vec-

tor for token j, and then normalized using the softmax function: softmax(xi) =

exp(xi)∑
j exp(xj)

. The normalization step ensures that all the attention values for a single

token sum up to one. The output of the self-attention operation for token i is then

a sum of all the value vectors for the tokens, weighted by their attention values:

e′i =
∑
j

attention(i, j)Vj

In practice, the e′i vectors are computed more efficiently all at once as matrices,

so the complete equation is:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V1

The additional
√
dk factor in the denominator is just a normalization factor in-

1Note that the softmax function here is applied independently along the rows of the resulting
matrix, but is written as above for notational convenience.

7
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troduced in [57] that helps stabilize the gradients during training. Finally, each

of the outputs from the attention operation are passed through a multilayer per-

ceptron (MLP), often a two layer network parameterized by matrices W1 ∈

Rdv×dmlp ,W2 ∈ Rdmlp×d. The MLP is applied independently to each e′i, so one

component of the output ci can be written as:

ci = MLP (
∑
j

attention(i, j)Vj)

Intuitively, self-attention is meant to allow to different components of the input to

learn to use information from other relevant parts of the sequence. The attention

values that weight the sum over V can be thought of as representing the impor-

tance of a particular token j to the current token i. The new representation ci for

i can then include information about any other components in the input. For this

reason, embeddings output from attention blocks are often called contextualized

word embeddings. This is as opposed to static word embeddings, like those de-

scribed in Section 2.1.1, which depend only upon an individual token for their

value and not the surrounding context.

Many transformer architectures also include layer normalization and residual con-

nections after both the self-attention operation and the MLP. Additionally, they

often use multi-head attention, which is a variant of self-attention which uses

multiple independent attention computations. An attention head consists of the

key, query and value matrices WK ,WQ,WV that define self-attention (so the

simplest case described above is a single attention head). Multi-head attention

uses multiple different attention heads, with k sets of matrices, and then concate-

nates the resulting output vectors together before a final linear projection:

MultiHeadAttention(e) = Concat(head1, ..., headk)W
O

8
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Figure 2.1: Scaled Dot Product Attention and Multi-Head Attention from [57]

where headi is a single attention head:

headi = Attention(WQ
i e,WK

i e,W
V
i e)

The three matrices WQ
i ,W

K
i ,W

V
i are equivalent to those defined for single-head

attention above, and WO ∈ Rkdv×dmodel is a final linear projection of the concate-

nated outputs, where dmodel is the input dimension of the following MLP. Figure

2.1 from the original paper [57] shows diagrams for both single and multi-head

attention.

Lastly, it is important to note that the attention operation described above, as well

as the application of the MLP, is invariant to the ordering of tokens in the sentence.

This is clearly an issue for language tasks (e.g. "man bites dog" is certainly not

the same as "dog bites man"). To solve this problem, a positional embedding is

added to each input embedding before the encoder and decoder, ensuring that the

9
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Figure 2.2: Transformer Architecture from [57]

model can approximate any sequence-to-sequence function [67]. This embedding

is meant to provide information about the location of each token in the sentence,

in addition to the information about the token itself already present in the original

embedding. These positional embeddings can be learned, or simply a function of

the position of a token that produces a unique vector.

The transformer encoder consists of a stack of these attention blocks, where each

block takes in the output embeddings of the previous block. The last attention

block in the encoder then outputs a set of contextualized word embeddings. The

decoder also consists of a series of attention blocks, but adds an additional self-

attention layer in each one, which computes the attention between the inputs to

10
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the decoder layer and the outputs of the encoder. This allows the decoder part of

the model to use information from the encoder as it generates the output sequence.

The bulk of the transformer architecture then consists of these few repeated op-

erations. Specific tasks, like machine translation, are accomplished by adding

classification layers that take in the contextualized embeddings from the decoder,

and produce the task specific output, e.g. a distribution over a vocabulary. Figure

2.2 from [57] shows an illustration of the overall transformer architecture.

2.1.3 Language Model Pretraining and Transfer Learning

While the original transformer model consists of both an encoder and decoder,

later works have used both parts independently to great effect [14, 41]. Encoder-

only models, such as [14], have been used as feature extractors for downstream

tasks, as their output contextualized embeddings contain more useful linguistic in-

formation than an embedding based solely on an input token. Decoder-only mod-

els like [41] are particularly effective for generating text, taking a prefix (usually

called a prompt) as input and generating further text based on that. Additionally,

the parallelizable structure of transformers (in contrast to a sequential model like

an LSTM) enables the training of significantly larger models via distributed train-

ing schemes. As a result, a slew of enormous language models, essentially all

either transformer encoders or decoders, have been trained and released as pre-

trained models [14, 35, 41, 7].

Pretrained models are usually trained using a language modeling objective, where

the task is to predict some word given the other words in a sentence. For example,

BERT [14], a commonly used pretrained model, was trained using masked lan-

guage modeling. In this task, some of the words in an input sequence are replaced

with a special mask token (e.g. "she walked the dog" may become "she walked

the [MASK]"), and the model then predicts what word was originally present.
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These kinds of pretraining objectives avoid the need to label data, since the label

is already present in the original text, and open up the huge amount of text on the

internet as readily available training data [16]. These models are often trained us-

ing billions of tokens and millions of gradient steps, in the hopes that the resulting

network encodes broadly relevant features of language. Despite the simplicity of

the objective, prior work has found evidence of fairly complex linguistic relation-

ships encoded in these pretrained models [55]. Further, after the initial pretraining

stage, these models can be adapted to more specific tasks, such as natural lan-

guage inference or question answering [14], and frequently achieve state-of-the-

art performance. This boost of performance from pretraining is often attributed to

transfer learning, the generalization of useful and universal language features to

specific tasks. However, while this approach is empirically effective for language

models, the precise mechanism by which it works is debated [25, 33].

To apply a pretrained model to some more specific task, the model is often trained

further on a task-specific dataset, a process called finetuning. In this approach,

all the model parameters are jointly optimized to solve the finetuning task, and

the pretrained model serves as a good initialization for the training process. In-

stead of optimizing the entire model, practitioners also frequently treat the pre-

trained model as a fixed feature extractor, feeding the contextualized output em-

beddings into a classification model, which is trained, but leaving the pretrained

model frozen. Falling between these two are training schemes that finetune only a

few layers of the pretrained model, e.g. the last two layers plus the classification

model, rather than all of them [39].
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2.2 Machine Learning Interpretability

With large pretrained language models serving as the starting points for so many

different language tasks and applications, it is critical for us to be able to under-

stand how they produce their outputs. This section outlines some of the reasons

why interpretability in machine learning is important, and some of qualities we

want good interpretations to have. Following that, it briefly summarizes the meth-

ods and evaluation frameworks used for the experiments in this work.

2.2.1 The Goals of Interpretability in Machine Learning

Interpretability is an inherently ill-defined concept in machine learning. What

constitutes a valid interpretation or explanation of a model is, in the most general

case, a subjective determination, dependent on context, the interpreter, and some

equally difficult to define notion of ‘comprehension’ or ‘understanding’ of a given

interpretation. Despite the broader vagueness of interpretability as an idea, we can

still consider the different potential goals of interpreting models, and how those

relate to necessary qualities of good explanations. Interpretability can serve many

different roles, such as increasing user trust in a system or ensuring safe behavior.

For difficult-to-formalize objectives like safety or ethics, interpretability can serve

as a proxy [17]. If we can understand how a model makes decisions, then we can

see when and why it makes unethical or unsafe ones.

With these uses in mind, one of the most important qualities of any interpretability

method is faithfulness to the behavior of the underlying model. For feature impor-

tance explanations, this would mean that components of the input that are more

important for prediction (in the sense that altering them would have the largest

impact on the prediction) should be assigned greater importance by the expla-
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nation. Models that are designed to be easily interpretable, often called inher-

ently interpretable models, have this behavior by default [44]. The explanation

comes as part of the model architecture, and so perfectly reflects model behavior

as well. Sparse linear models2 are an example of this, where the relatively small

set of non-zero coefficients can be taken as an explanation of the importance of

different components of an input (although the extent to which sparsity provides

interpretability is contestable [34]). In this work, though, we are concerned with

post-hoc explanations, which provide explanations of uninterpretable black-box

models, such as deep neural networks, after they have been trained [37, 43, 53,

45, 5, 49]. More specifically, we focus on local post-hoc explanations, which

provide explanations for individual model predictions, rather than for the model

as a whole [64]. To explain an entire model faithfully, the post-hoc explanation

would have to be as complex as the model itself [44]. Local explanations, on the

other hand, only need to explain model behavior around a particular input, which

may be significantly simpler. In order for these explanations to be trustworthy and

useful, we have to evaluate the extent to which they are faithful to the models they

explain.

2.2.2 Feature Importance Methods

Generally, the inputs to a machine learning model are called features. The tokens

that represent some text, for example, would be the input features to a natural

language model. Feature importance explanations are a broad class of local, post-

hoc explanation methods which all attempt to determine how relevant a particular

input feature was to a model’s prediction [64]. At a high level, all of these methods

2These are linear models of the form f(x) = wTx+ b, where x is the input features, and w, b
are a set of coefficients for each feature and a bias term, respectively. Sparse linear models are
distinct from linear models in the use of a variable selection mechanism, e.g. Lasso [56], which
encourages solutions where elements of w are 0. This entirely eliminates the impact of certain
features in x on the output.
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can be viewed as functions f(m,x) = a, where m is the function defined by the

ML model, x is an input to m, and a is the resulting attribution, a vector in R|x| that

assigns an importance value to each element of x. Different approaches compute

these values in different ways, as discussed in more detail below.

2.2.2.1 Gradient Methods

The simplest approach to estimating the importance of different features is using

the gradient of the model output with respect to the inputs [48]. Note that this

requires the model be end-to-end differentiable. In the simplest case, often called

vanilla gradients, the importance of some input feature xi ∈ x, relative to an

output m(x), is simply defined as:

importancei(x,m) =
∂m(x)

∂xi

3.

This can also be written more compactly as ∇xm(x) for all the elements of x,

where ∇ is the gradient operator. This gradient measures how sensitive the output

m(x) is to infinitesimal perturbations of the input features. Ideally, the sensitivity

for more important input features would be higher, and so they would have a larger

gradient/importance score. In practice, however, vanilla gradient explanations are

often very noisy and misleading [2]. There have been several proposed explana-

tions for this behavior, such as gradient saturation [53] or sharp local fluctuations

of the gradient that do not impact prediction [49]. Many variants of this basic

method have been proposed to alleviate these issues and improve the resulting

explanations [49, 53, 5, 36, 45].

Aside from the vanilla gradients method described above, we evaluate two addi-

3Note that if m(x) outputs a vector rather than a scalar (as in multi-class classification), the
derivative is computed with respect to a particular output position, usually the highest predicted
class in the classification case.
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tional kinds of gradient explanations. The first is a straightforward variation of

vanilla gradients where the gradient is multiplied by the original input (generally

called gradient*input). In this case, the explanation is given by

importancei(x,m) =
∂m(x)

∂xi

∗ xi.

For explanations of word embeddings, where xi is an embedding vector in Rn, this

corresponds to a dot product between the token embedding and its gradient. The

second method is Integrated Gradients [53]. Integrated Gradients was designed to

avoid some of the problems with vanilla gradient explanations, such as gradient

saturation. It approximates a path integral over gradients between a reference

input (called the baseline) and the input being explained. Feature importances for

Integrated Gradients are given by:

importancei(x,m) = (xi − x′
i) ∗
ˆ 1

0

∂m(x′ − α ∗ (x− x′))

∂xi

dα

where x′ is the baseline. For experiments in this work, the baseline inputs are gen-

erated by replacing all the original tokens in the input with uninformative padding

or masking tokens.

2.2.2.2 Perturbation/Surrogate Model Methods

A separate class of feature importance methods do not assume differentiability,

instead treating the model as a black box and estimating importance values based

purely on input and output values. Two approaches, LIME [43] and SHAP [37],

are the most commonly used examples. Both these methods work by generating

perturbed versions of the given input. An input image, for example, might be

perturbed by having a portion of it masked out. The various perturbations are

then input to the black box model, and the output values are used as labels. This
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dataset of perturbed inputs and black box outputs is then used to train a simpler,

more interpretable model to approximate the behavior of the black box model.

The interpretation of the approximate model is then taken as the explanation of

the black box model as well. The inputs are often also combined into a smaller set

of higher-level features, so that the number of possible perturbations and features

in the interpretable model is tractable. For vision models, for example, an input

image might be segmented into several superpixels, and each superpixel could be

masked or not-masked, instead of each pixel.

More formally, LIME with a linear interpretable model (the most common case)

minimizes the following objective:

L(m, f,Πx) =
∑
x′

Πx(x
′)(m(x′)− f(x′))2

where m is a black box model, f is the linear model, and Πx is a proximity

function, which measures the distance between a perturbed sample x′ and the

primary input x. The proximity function is meant to more heavily weight the

approximation of perturbations that are close to the original input. The coefficients

of the linear model then represent the importance of each feature to the output.

SHAP minimizes the same objective, but substitutes in a specific choice of Πx

so that the solution estimates the Shapley values [46] for each feature. Shapley

values are a concept from cooperative game theory that describes the average

contribution of individual agents in a coalition to the overall utility of the entire

group. In the context of explainability, the input features take the place of the

agents, and their contributions are the feature importance values. Let n be the

number of input features in x, and let |x′| be the number of non-zero features in a
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perturbed input. By setting Πx to

Πx(x
′) =

n− 1(
n
|x′|

)
|x′|(n− |x′|)

we recover (an approximation of) the Shapley values from LIME. This version

of SHAP that builds on LIME is called KernelSHAP (after the specific ‘Shapley

Kernel’ Πx defined above).

These surrogate model methods have the benefit of not requiring differentiability,

and can avoid issues like gradient saturation mentioned earlier. However, they

assume, by the choice of interpretable model, a simple, often linear, structure to

the decision surface of the black box model around the input being explained. If

that decision surface is not simple, the resulting explanation may be very mislead-

ing. They are also computationally more expensive, as multiple forward passes

are required to generate labels for the perturbations, and a separate model has to

be trained on that new dataset.

2.2.2.3 Attention Values

Several prior works have also proposed using the attention values computed by

transformers as a form of explanation [9]. This is an explanation method that is

built-in to models like transformers that use self-attention. Because self-attention

values represent the ‘relevance’ of one token to another at a particular layer, those

values should be able to provide some kind of interpretation of model behavior.

Important tokens, ideally, should have high attention values, while less relevant

tokens should have lower values. However, the validity of using attention values

as explanations is highly contested [30, 60], and it is not clear that they are a

consistent and faithful form of explanation. Additionally, the fact that transform-

ers stack multiple layers of self-attention on top of one another complicates this
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process. Because the embeddings output by an attention block are linear com-

binations of information from all the input embeddings, they no longer represent

individual inputs. Attention values in a transformer for layers beyond the first one,

then, do not necessarily correspond directly to input tokens in the same position.

Consider a sequence of token embeddings (e1, ..., en) that are passed through a

self-attention layer and transformed into (c1, ..., cn). If (c1, ..., cn) are passed

through a second self-attention layer, which computes a high attention value for

c1, this is not necessarily indicative of the importance of e1. Despite this, because

these pretrained models are trained to generate representations for each token, we

can still assume that ci roughly represents ei, and use the attention values at each

layer as a measure of the importance of ei. This can be done by averaging the

attention value from each position to a position i at each layer, or through more

complicated approaches, as in [1]. While attention is not a standard form of post-

hoc explanation like the previously described approaches, it is useful to include

in this work, where we can compare across a large number of models and meth-

ods, to see how well it correlates with other forms of explanation. We evaluate

two forms of of attention explanation here. The first is the previously described

average attention paid to each token across all other tokens and layers (denoted

Average Attention in the results). For a particular input token i, we can write this

as:

AverageAttentioni(A,x) =
1

NL

1

NH

1

|x|

NL∑
l=0

NH∑
h=0

|x|∑
j=0

Alhji

where NL, NH are the number of layers and attention heads, |x| is the number of

tokens in the input x and A is the NL ×NH × |x| × |x| tensor of attention values

produced by passing x through a transformer.

The second approach is one of two methods proposed in [1] called Attention Roll-

out, which instead multiplies the attention matrices of each layer together to gen-
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erate a combined attention matrix. First we average the attention values in each

layer across attention heads, and then matrix multiply the averaged values of each

layer together. To convert the final n × n attention matrix to n per-token values,

we take the average attention paid to each token across all other tokens. Formally,

for an input token i, this is

AttentionRollouti(A,x) =
1

|x|

|x|∑
j=0

(

NL∏
l=0

1

NH

NH∑
h=0

Alh)ji

2.2.3 Evaluating Explanations

While methods for generating explanations from otherwise uninterpretable mod-

els are important, designing frameworks for evaluating the quality of those expla-

nations is equally important. If we have no way of ensuring that these methods

accurately explain the models they are applied to, then using them in practice,

with the risk of misleading and incorrect explanations, will be ineffective and

potentially dangerous. This section describes three approaches to evaluating ex-

planation faithfulness. In one, we construct datasets where the features relevant

to prediction are known, and then measure the extent to which feature importance

explanations highlight those ground truth features. The second involves interven-

ing on the model inputs, based on their explanations, and measuring the impact

these interventions have on the predictions of the original model. The third ran-

domizes various parts of the model, and compares the similarity of explanations

between the original and randomized models.

2.2.3.1 Datasets with Known Feature Importances

One of the primary difficulties in evaluating explanation methods is separating the

behavior of the underlying model from those of the explanation. An explanation
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that looks incorrect or unusual to a human could be incorrect, or it could just be the

result of unintuitive behavior in the model being explained. In this latter context,

faithful explanations could still appear incorrect, solely because of the underlying

model. To get around this issue, several works have proposed evaluation setups

that construct synthetic or semi-synthetic datasets where the relevance of different

features for prediction are known [6, 68, 65]. By training models on these datasets

where only certain features are useful for prediction, we know that those models

that perform well must use those features. Explanations can then be evaluated by

the extent to which they rank the known relevant features as more important than

irrelevant ones.

The most relevant example of this for this work is [68], which proposes a general

framework for generating semi-synthetic datasets of this sort. This framework

starts by randomizing the original labels of the dataset. This ensures (with a high

probability) that the features in the data that were originally correlated with the

labels (and would therefore be useful for prediction) no longer are. After this, an

‘input manipulation’ is applied to each datapoint, adding in a new feature whose

value depends on the randomized label. These new features of the data are then the

only features that are useful to predict the label. [68] gives the example of adding

a watermark to an image. If we scramble the image labels so that the original

image pixels no longer correlate with the labels, and then add watermarks to the

image based on the new labels, then explanations for models trained on this data

should highlight the watermark significantly more than any other part of the im-

age. The amount of correlation between the added features and the labels (which

represents how important the feature is to prediction), can also be controlled by

only adding the new features to a certain percentage of inputs with a particular

label, allowing for more fine-grained evaluations of features with varying impor-

tances. In any case, the ground truth feature importance can be represented by a
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binary mask, with 0s everywhere except for the added features. This mask can

then be compared to explanations using various different metrics [6]. We use two

metrics for our experiments: Ground Truth Overlap and Mean Rank.

Ground Truth Overlap measures how frequently the most highly ranked features

in the explanation match those in the label. Generically, this can be written as

GTOverlap(A,L) =
1

|A|
∑

i∈{1...|A|}

I[topk(Ai, ∥Li∥0) = topk(Li, ∥Li∥0)]

where A,L are the explanations and ground truth labels for a set of example in-

puts, Ai is the attribution vector for the ith input, and Li is the binary ground truth

vector for the ith input. topk(x, k) is a function that returns the indices of the

k greatest values in x, and I[x] is the indicator function, which returns 1 if the

statement x is true and 0 if it is false. This measure checks if the locations of

the highest ranked features in the explanation match the locations of the nonzero

values in the label vector, and measures the proportion of the time that that is true

over all the examples. Note that the number of features compared can vary per

example (the L0 norm ∥Li∥ counts the number of non-zero features in the label),

but in the SST case each example only has one relevant feature, so ∥Li∥ = 1 for

all samples. Higher values of Ground Truth Overlap are better, as it means the

explanations are correctly identifying the most important features.

The second metric is Mean Rank, which was proposed by [6]. Mean Rank mea-

sures how much of an explanation’s induced ranking, from greatest to least, you

must retain before recovering all of the ground truth features. Formally, this is

written as

MeanRank(A,L) =
1

|A|
∑

i∈1...|A|

min r, s.t. topk(Li, ∥Li∥0) ⊆ topk(Ai, r).
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r represents the depth of the ranking that we want to minimize, and we take the

smallest value of r that still includes all the ground truth features. Lower values

for this metric are better, because small values for r mean the ground truth features

tend to cluster at the top of the ranking. Because the length of inputs varies, we

also normalize each r in the sum by the length of the input sentence:

MeanRankPercentage(A,L) =
1

|A|
∑

i∈1...|A|

min
r

|Li|
, s.t. topk(Li, ∥Li∥0) ⊆ topk(Ai, r)

so the resulting values are all between zero and one. This can be seen as the

average percentage of an input that must be included (based on an explanation’s

ranking) to recover the ground truth features.

Both these metrics are useful in situations where all the ground truth feature attri-

butions are known, but that requirement limits their use in many realistic scenar-

ios. In the experiment outlined above, we explicitly construct a dataset where the

feature attributions are known, but for natural datasets and more complex tasks,

there may be multiple predictive features and feature interactions that compli-

cate the determination of ground truth attributions. In this case, these metrics

would not be useful. Take, for example, a dataset with two features x1, x2 that

are both equally predictive of the label. A classification model trained on this

dataset could use either feature to predict the label, and a faithful explanation of

that model would assign a high value to either x1 or x2. If either feature were

chosen as the ground truth attribution, an explanation could appear to fail simply

because the underlying model happens to use the other feature. Because of these

kinds of concerns, it is critical to know precisely how different features contribute

to predictions and what the behavior of the explained model is before using these

metrics. Additional, more specific details of this experimental setup are also dis-

cussed in Section 3.1
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2.2.3.2 Relevance of Explanation Rankings to Prediction

A different approach to estimating the quality of explanations avoids the need for

specialized datasets, instead estimating how well explanations identify relevant

features by altering the original input based on its explanation, and measuring the

difference in prediction between the original and altered datapoints. This is done

using two metrics, Sufficiency and Comprehensiveness [24]. In both cases, fea-

tures are first ranked based on the values assigned to them by a feature importance

explanation. This ranking induced by the explanation is then used to determine

how the original datapoint is altered. Sufficiency is the difference between the

original prediction and the prediction of the datapoint with only a subset of the

top ranked features. All other features are replaced with zero or some similarly

uninformative value. Comprehensiveness is the same predictive difference, but

with the opposite alteration, removing only some of the top-ranked features, and

leaving the rest unchanged. A faithful explanation should have a low Sufficiency

value and a high Comprehensiveness value. Sufficiency measures the extent to

which an explanation highlights features needed for a correct prediction. If the

prediction changes little when using only the top-ranked features, then the expla-

nation correctly identifies features that ‘justify’ the model prediction. Compre-

hensiveness measures how well an explanation captures all the relevant predictive

features, rather than just a sufficient set. If we remove the highest ranked features,

and the prediction changes only a small amount, then there are additional impor-

tant features that the explanation ranks as unimportant. High Comprehensiveness

then suggests that the explanation captures all or most of the important features

near the top of its ranking. Generally, these metrics are averaged over a set of

different percentages, i.e. keeping/removing 5%, 10%, etc. of the most important

features. Both these metrics are precisely defined as follows:
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Definition 2.1 (Sufficiency) Let x ∈ X , ax ∈ R|x| be an input and its corre-

sponding feature attribution explanation, respectively. |x| is the dimension of an

input x. Let m : X → R be the function defined by the black-box model be-

ing explained, and K ∈ [0, 1]n be the set of averaging fractions. KeepTopk :

X ×R|x| → X is a perturbation function that takes as input the pair (x, ax), and

returns a perturbed datapoint, x′ = KeepTopk(x, ax). x′ is equivalent to x for the

fraction of features k with the greatest corresponding values in ax, and to zero (or

an equivalently uninformative value) elsewhere. Sufficiency is then defined as

Sufficiency(x, ax) =
1

|K|
∑
k∈K

m(x)−m(KeepTopk(x, ax))

Definition 2.2 (Comprehensiveness) Let x, ax,m and K be defined as in 2.1.

RemoveTopk : X × R|x| → X is a perturbation function that returns an altered

datapoint x′ based on the input pair (x, ax). x′ is equal to x for all features

except the fraction k with the greatest attribution values, which are set to zero.

Comprehensiveness is then defined as

Comprehensiveness(x, ax) =
1

|K|
∑
k∈K

m(x)−m(RemoveTopk(x, ax))

As a simple example, let m be a sentiment prediction model, that takes in a sen-

tence and outputs the probability that the sentiment of the sentence is positive.

If an input sentence were "he is happy", we would expect m to output a high

probability, since the sentence is clearly positive. A good feature importance

explanation for this input could be something like a = [0.02, 0.01, 3.4], with a

significantly higher value for the word ‘happy’. If we remove or mask the bottom

two tokens to compute Sufficiency, setting k from above to 0.66, we would have
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"[MASK] [MASK] happy."4 We would expect m("[MASK] [MASK] happy") to

be close to the original prediction, since ‘happy’ is the only word in the input that

is clearly positive.5 To compute Comprehensiveness, we remove the top word,

setting k to 0.33, resulting in "he is [MASK]". We expect m("he is [MASK]") to

be lower than the original prediction, as "he is" does not have a strong positive or

negative connotation. By performing these input alterations, and averaging Suf-

ficiency and Comprehensiveness values across many examples and values of k,

we can measure the extent to which different explanation methods identify fea-

tures that are actually relevant to model predictions. However, although these

measures avoid the need for ground truth feature attributions, they are not always

reliable. The alteration procedure for computing Sufficiency/Comprehensiveness

can produce new inputs that are out-of-distribution (OOD) for the original model

m. OOD inputs are those that come from a different distribution than the data m

was trained on, and performance on those OOD inputs may not be reflective of

behavior on more realistic in-distribution examples [28].

2.2.3.3 Model Invariances

A third approach to measuring explanation quality takes a different view com-

pared to the previous two approaches. Rather than focusing on how well expla-

nations correlate with changes in prediction or with ground truth labels across

many inputs, we can instead focus on how sensitive they are to changes in the

model itself. If we alter the parameters of the model, then we would expect our

explanations to change as well. If an explanation method is invariant to the model

4There are many different ways to perform this alteration. Here, we just use a generic mask
token which is common in the pretraining objectives of models like BERT. However, tokens could
be simply removed, or replaced with other kinds of uninformative baseline values.

5Generally speaking, this is something of a simplification. Because language is so deeply com-
positional, assigning sentiments to individual words like this is not always justified. For example,
the phrase ‘not happy’ is certainly not positive, despite containing a word frequently associated
with positivity. See [19] for a more extended discussion on this issue.
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parameters, then it is not faithful to the model, since those parameters determine

the model behavior and outputs. By randomizing portions of the model parame-

ters, generating new explanations for it, and then comparing those explanations to

those generated for the original, we can measure this invariance. This approach

was first proposed in [2] and applied to a limited set of language models in [32].

Specifically, [2] provides two different randomization approaches for measuring

explanation invariance, both generally applied to deep neural networks with mul-

tiple layers. In one, called cascading randomization, each layer of the model is

randomized in succession, starting from the last and moving backwards. After

reaching the input layer, the whole model has been randomly initialized. At each

layer, after it is randomized, a new explanation is generated. The rank correla-

tion between these explanations and the explanation for the unrandomized model

then measures how sensitive an explanation method is to the model parameters.

As more of the model is randomized, we expect a good explanation method to

produce less correlated explanations. The second approach, called independent

randomization, is similar, but randomizes each layer by itself, rather than in cas-

cading fashion. All the other model parameters except for the one layer under

consideration remain the same, so we can isolate the impact of individual layers

on explanations. As in the cascading case, a new explanation is generated for each

layer, and the correlations between those and the original explanation measure the

explanation’s sensitivity to the model.

As an example, Figure 2.3, from [2], shows a visualization of the cascading ran-

domization approach, and how the explanations for an image model change (or do

not for some methods) as successive layers of the model are randomized. Smooth-

Grad, for example, appears more sensitive to the model parameters than Guided

GradCam. The image of the bird in the saliency map gradually disappears for

SmoothGrad, and is entirely gone after 10 layers of randomization. Guided Grad-
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Figure 2.3: Explanations after Cascading Randomization for an ImageNet exam-
ple on InceptionNet v3 from [2]

Cam, in contrast, includes the bird image clearly at every layer, showing that the

explanations do not depend on the model parameters (and instead rely on artifacts

in the input).

As mentioned above, the similarity between explanations is usually measured us-

ing the Spearman rank correlation, also called Spearman’s ρ [51]. This measures

the similarity between the rankings induced by two random variables, as opposed

to measuring the similarity between their actual values like the standard Pearson

correlation coefficient. More formally, let R : Rd → Nd, be a function mapping

feature attributions axi, ayj ∈ Rd to their corresponding rankings from greatest

to least (e.g. R([.5, .3, .9]) = [2, 3, 1]). For n samples ax = (ax1...axn) and

ay = (ay1...ayn), we can write the Spearman rank correlation as

ρR̃(ax),R̃(ay)
=

cov(R̃(ax), R̃(ay))

σR̃(ax)
σR̃(ay)

where R̃(ax) = (R(ax1)...R(axn)) and R̃(ay) = (R(ay1)...R(ayn)) are the rank-
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ings for all samples, cov(R̃(ax), R̃(ay)) is the covariance between the rankings of

ax and ay, and σR̃(ax)
, σR̃(ay)

are the standard deviations for both rank variables.

This is a suitable choice for comparing feature importance explanations because

it measures how the relative importance of the features, irrespective of their exact

attribution values, changes as we randomize model parameters. If a ranking stays

the same as parameters are randomized (meaning a high value of ρR̃(ax),R̃(ay)
),

then the explanation method highlights the same features as important regardless

of the underlying model behavior. Additional details on the experimental setup

are given in Section 3.3.

2.3 Adversarial Examples for Explanations

Adversarial examples [22] were originally proposed as a way to demonstrate po-

tentially unintuitive behaviors in machine learning models. Given an input and a

trained model, a new input, the adversarial example, is generated via an opti-

mization procedure. The objective of the optimization forces the adversarial ex-

ample to be similar to the original input but to have a different prediction from the

trained model. For example, [52] proposes a method for generating a single pixel

perturbation of images that changes the prediction of an image classifier. Because

the ground truth class of the image does not change with alteration of one pixel,

the adversarial example is exploiting idiosyncrasies of the classifier, which would

preferably not exist in a more robust model, to change the prediction.

Later work applies a similar framework to generating adversarial examples for

explanations [21]. In this context, rather than attempting to change the output

of a model with a minimal perturbation of the input, the goal is to change the

explanation of the input, leaving the output unchanged. It is worth noting that

this approach only applies to local explanations, as there is no datapoint to perturb
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or optimize with respect to for global explanation methods. [21] proposes an

approach for generating adversarial examples for feature importance explanations,

optimizing the following objective:

argmax
δ

D(ax, ax+δ), s.t. ||δ||∞ ≤ ϵ, argmax(m(x)) = argmax(m(x+ δ)).

δ is the perturbation of the original input x. ax, ax+δ are the feature importance

explanations for x and the adversarial example x + δ, respectively. ||δ||∞ is the

max norm of the perturbation, which limits the largest component of the pertur-

bation to be smaller than ϵ, a hyperparameter. D : Rd × Rd → R is a distance

function, which measures the similarity between two input explanations. Lastly,

the constraint argmax(m(x)) = argmax(m(x + δ)) ensures that the prediction

of the adversarial example, m(x + δ) matches that of the original input m(x).

Maximizing D while satisfying the given constraints then produces a pair of data-

points (x,x+ δ) that have the same predicted class, but different explanations (at

least to the extent that D can be increased without violating any constraints).

[21] proposes three different choices (called ‘attacks’ in the paper) for the distance

function D. In this work we focus on the top-k attack, which defines D as

D(ax, ax+δ, k) =
∑

i∈topk(ax,k)

−ax+δ,i

where k is an integer hyperparameter between 1 and |x|, and topk(x, k) returns the

indices of the greatest k elements in x, ranked according to their attribution values

ax. This choice of D attempts to minimize the importance values assigned to the

top k ranked elements in the original explanation. An ideal adversarial example

would then assign very low importance values to the k elements that have the

greatest values in the original explanation. This is an important choice of attack

30



University of Oxford Department of Computer Science

to assess, as explanation methods are frequently used in practice to determine

the relative importance of features, relying on their rankings as opposed to the

attribution values themselves. Adversarial examples that can change the rankings

of explanations without altering the prediction would then raise questions as to

the validity of ranking features by their attribution values.

The formulation proposed in [21] also allows for significant changes in model

output, raising possible problems in interpreting the relationship between adver-

sarial examples and the original inputs. Because the constraint between m(x)

and m(x + δ) only requires that the predictions are equal, the probabilities that

determine those predictions can still fluctuate. For example, an input with a pre-

dicted probability of 51% for a particular class could be an adversarial example

with respect to an input with a 99% predicted probability for the same class. This

is an undesirable property when we are generating adversarial examples for ex-

planations. While two inputs may have the same predicted class, it is possible

that different combinations of features were important in determining each pre-

diction. In this case, treating one input as an adversarial example relative to the

other would be misleading, as faithful explanations of the two inputs should give

high attribution values to two different sets of features. Optimizing for adversarial

examples that only match predictions then requires assuming that the same set of

features determines all predictions within a particular class.

A more preferable adversarial example would be one that has a different explana-

tion, but that also has a similar output probability, rather than just the same output

prediction. This is a stronger constraint, and helps ensure that adversarial exam-

ples produce outputs that closely match the original datapoint. By strengthening

this constraint, and forcing adversarial examples to be more similar to their orig-

inal inputs, we make it more likely that the relevant features for the original and

adversarial inputs are the same. When the important features for prediction are the
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same for adversarial and original inputs, then we can claim that any discrepancy

between the explanations is the result of unexpected and potentially undesirable

behavior of the explanation method. Otherwise, those discrepancies could be the

result of changes in the relevant underlying features for the two different inputs,

which are independent of the explanation method.

By augmenting the original objective from [21], we can additionally optimize for

examples that match the output probabilities of the original inputs:

argmax
δ

αD(ax, ax+δ)− β(m(x)−m(x+ δ))2 s.t. ||δ||∞ ≤ ϵ.

This new objective optimizes the same distance function D, subject to the same

perturbation constraint ϵ, but the prediction constraint is replaced by (m(x) −

m(x + δ))2, the squared error between the outputs of the original input and the

adversarial example.6 α, β ∈ R+ are hyperparameters determining the tradeoff

between maximizing the difference between explanations and minimizing the dif-

ference in output predictions. Optimizing this objective forces adversarial exam-

ples to be close in probability, not only in prediction, by minimizing the squared

error between the outputs. In the experiments, we compare both methods, and

compare the impact of each one on both the explanations and predicted probabil-

ities.

To assess the quality of the adversarial examples, we use three measures. The

first two relate to the impact of the adversarial examples on explanations. The

first, denoted "Rank Change" in the results, measures the percentage of the top

k indices, sorted by their attribution values, that change between the original and

6Note that this assumes the output of m is a scalar for simplicity. In the multiclass case, you
could either choose the probability of the predicted class or optimize for the sum of squared errors
across all classes. In the experiments, we choose the former and optimize for similarity with the
predicted classes probability.
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adversarial explanation. For example, if the top three indices for the original

explanation were [12, 3, 7] and the top three indices for the adversarial explanation

were [3, 15, 7], then the Rank Change value would be 0.66, as the first and second

rank values are different. Formally, we can write this as

RankChange(ax, ax+δ, k) =
1

k

k∑
i=0

I[topk(ax, k)i = topk(ax+δ, k)i]

where topk(x, k) returns the indices of the top k elements in x, and I[x] is the

indicator function, which is one if x is true and zero otherwise.

The second measure uses the attribution values directly, rather than their induced

ranking, and is labeled "Top-k Sum Change" in the results. First, we sum the

results of the top k attribution values for the original explanations, and then sum

the attribution values in the same positions for the adversarial explanation. The

difference between the two sums is then the Top-k Sum Change. Mathematically,

this is:

TopkSumChange(ax, ax+δ, k) =
∑

i∈topk(ax,k)

ax,i − ax+δ,i

These two measures allow us to assess how effectively the adversarial examples

change the explanations of the original inputs. RankChange measures the impact

on the rankings of different features, while Top-k Sum Change measures the extent

to which the attribution values themselves are reduced.

The remaining measure focuses on the impact of the adversarial example on the

model output, rather than on the explanation. Labeled "Probability Change" in

the results, this measure is the difference between the output probability of the
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predicted class for the original input and the adversarial input:

ProbabilityChange(x,x+ δ) = m(x)−m(x+ δ).7

As discussed earlier, ideal adversarial examples in this context should not change

the output probability significantly while still changing the accompanying expla-

nation. Therefore, the best adversarial examples should have high values for Rank

Change and Top-k Sum Change, and low values for Probability Change. Con-

versely, explanation methods that are robust to adversarial perturbations should

have low values for Rank Change and Top-k Sum Change. The Probability Change

value only depends on the adversarial datapoint, not the explanation method, so its

value is unimportant for assessing adversarial robustness, except insofar as it in-

dicates that an adversarial example is valid (i.e. close in probability to the original

input) or not.

7As mentioned earlier, this assumes a scalar output. The multiclass version is identical after
choosing the greatest probability from the output vector m(x)
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3 | Experimental Setups

With the general evaluation frameworks and explanation methods defined, we can

now move on to the specific experiments conducted in this work. This section

outlines the five sets of experiments we use to evaluate post-hoc explanations for

language models. The first alters a well-known sentiment analysis dataset so that

it has known feature attributions, enabling us to compare the fidelity of various

explanation methods against ground truth feature importances. The second evalu-

ates Sufficiency and Comprehensiveness on natural language inference tasks, us-

ing two different datasets. The third set of experiments uses layer randomization

to measure how sensitive different kinds of explanations are to model parameters.

The fourth section describes two methods for ensembling explanations together

that we evaluate, to assess any potential benefits of combining multiple explana-

tions together. The fifth section describes the experimental setup for evaluating

the adversarial robustness of explanations. Lastly, the sixth section describes the

two sets of transformer models to which we apply each experiment.

3.1 Adding Known Feature Attributions to the Stan-

ford Sentiment Treebank

The goal of this experiment is to measure the faithfulness of an explanation with

a simple, synthetic setup (Section 2.2.3.1). Applying the framework proposed in

[68] to a sentiment analysis task, we design a dataset in which a single word is

clearly predictive of the label. In this context, faithful explanations should al-

ways assign the predictive word the greatest value. [68] apply their framework to

evaluate attention-based explanations produced by a bidirectional LSTM + Atten-

tion model, but we extend their results by evaluating transformer models across a
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greater number of explanation methods.

The Stanford Sentiment Treebank (SST) [50] dataset is designed for sentiment

classification. The dataset consists of a set of movie reviews, and accompanying

binary labels, with 0 indicating a negative review and 1 a positive review. The

task is to predict from the review whether it is positive or negative in tone. Using

the framework from Section 2.2.3.1, we augment this dataset with an additional

feature that determines the labels. To this end, we first randomize the labels of

the original dataset, to decorrelate them from the original features. Then, each

review has either the word "positive or the word "negative" appended to the end

of the sentence, depending on whether the label (post-randomization) is one or

zero. The feature importances for the added "positive"’s and "negative"’s should

be significantly higher than all other tokens for faithful explanations. An example

augmentation for one (sentence, label) pair could work as follows:

Unmodified Datapoint: "the film was good", 1

Label Modification: "the film was good", 0

Feature Modification: "the film was good negative", 0

In this experiment, we use the version of SST included in the GLUE benchmark

[59], which breaks up some of the original reviews into shorter examples than the

original SST dataset. The task and labels are identical to the original SST. We use

this version because training and explaining the shortened reviews is less compu-

tationally expensive, allowing us to run it on the available resources. Moreover,

lengthier examples would provide little additional insight beyond making the task

harder (and several explanation methods already perform poorly on the shortened

reviews), as we are interested in isolating a single added token. The results of this

experiment are given in Sections 4.1.1 and 4.2.1.
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3.2 Evaluations on Natural Language Inference Tasks

The augmented SST dataset allows us to precisely isolate the relevant features

for prediction, but it is also a synthetic design. This makes it difficult to reason

about how explanation methods may perform on more realistic or complex tasks.

To evaluate that case, we measure Sufficiency and Comprehensiveness (Section

2.2.3.2), which do not require ground truth feature attributions, on the task of

natural language inference (NLI).

Natural language inference is a three-class classification task. A model takes as

input two pieces of text, a premise and a hypothesis. It then predicts whether the

premise entails the hypothesis, contradicts it, or is unrelated to it. For example,

the premise "he walked the dog" and the hypothesis "the dog was walked" would

be labeled as entailed. Replace the hypothesis with "they cooked dinner" or "the

dog stayed at home" and the label would change to unrelated or contradiction,

respectively. We evaluate explanations on two NLI datasets, MultiNLI [62] and

e-SNLI [12].

A small implementation detail for NLI tasks is worth noting here. While the

premises and hypotheses are given as two separate inputs, they are usually treated

as one string of text for transformer models. Each premise and hypothesis is

concatenated together (generally with a model-specific end-of-sentence token in

between) and passed to the model as a single input.

The following two sections provide brief overviews of MultiNLI and e-SNLI

datasets.
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Figure 3.1: Example Rationale Annotations from e-SNLI

3.2.1 MutliNLI

MultiNLI is an NLI dataset designed to cover a broad range of different kinds

of text. Examples in MultiNLI come from 10 different genres of text such as

transcriptions of telephone conversations, fictional works, and face-to-face con-

versations. It has approximately four hundred and thirty-three thousand examples

in total, with 392,702 in the training set, and 20,000 each in the validation and test

sets.

3.2.2 e-SNLI

e-SNLI is based on the Stanford Natural Language Inference (SNLI) corpus [8].

SNLI was generated by having annotators write alternate captions for captioned

images from the Flickr30K corpus [66]. Annotators were instructed to generate

new captions that were definitely true, potentially true, or definitely false based

on the original caption. The pairs of original and alternate captions were then

used as premises and hypotheses in the SNLI dataset. e-SNLI adds human an-

notated rationales to the original SNLI examples. Rationales in this case are just
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the snippets of the premise or hypothesis necessary to justify the label. Annota-

tors highlighted these relevant snippets for each example, and provided a natural

language explanation for their highlights. Figure 3.1, from [12], shows a few

examples with the rationale snippets highlighted and the annotator explanations.

There are 570,000 examples total, with 550,000 in the training set and 10,000

in the validation and test sets. We use the version of e-SNLI provided by the

ERASER benchmark [15], which only includes the highlighted rationales. This is

because the additional natural language explanations are not needed to compare

to feature importance explanations. The results for this experiment are given in

Sections 4.1.2, 4.1.3, 4.2.2 and 4.2.3.

3.3 Layer Randomizations and Explanation Sensi-

tivity

For any of the models trained on the datasets in Sections 3.1 and 3.2, we can

additionally randomize their parameters and measure the sensitivity of different

explanation methods as described in Section 2.2.3.3. Rather than randomizing

individual layers, we randomize attention blocks as single units (consisting of a

self-attention layer and the following MLP). The results for this experiment are

given in Sections 4.1.4 and 4.2.4.

3.4 Ensembles of Explanations

In addition to evaluating the faithful of individual explanation methods, we also

combine multiple explanations into ensembles. An ensemble of methods has the

potential to be more consistent than any single method, if the individual expla-

nations are not all failing on the same examples. Let x be an example datapoint,
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x ∈ Rn. Let A = (a0...ak), ai ∈ R|x| be a set of feature attributions for x from k

different explanation methods. We can combine these explanations by computing

the average importance assigned to each feature xj ∈ x. The importance for the

j-th feature is then

EnsembleImportance(A)j =
1

|A|
∑
i

Aij
1

We evaluate two different groups of ensembles using the same models and metrics

as the individual methods, to see if combining them improves performance. The

first group, denoted "Ensemble (All Methods)", averages all seven of the evaluated

methods together. The second, "Ensemble (Top 3)", combines only LIME, SHAP

and Integrated Gradients, which consistently outperform the other four methods

(see 4). Gradients, Gradients*Input, Average Attention and Attention Rollout fre-

quently perform approximately as well the random baseline in several cases, and

so may just be adding noise to an ensemble. This second group helps isolate the

effect of only combining methods that are also consistently effective in isolation.

The results for the ensemble methods are given in Sections 4.1.5 and 4.2.5.

3.5 Adversarial Examples

To evaluate the robustness of different explanation methods to adversarial inputs,

we generate two sets of adversarial examples for each model and dataset. Be-

cause we optimize the adversarial examples using gradient descent, the expla-

nation methods we consider must be differentiable. Because of that, we only

generate examples for Gradients, Gradients*Input and Integrated Gradients. The

1Note that all explanations ensembled here should be normalized to sum to 1, so that contribu-
tions to the average are independent of the relative magnitudes of the values produced by different
methods.
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adversarial examples are generated using the two objectives given in Section 2.3.

The first objective, which only requires the predictions of the original and adver-

sarial example to match, is labeled the "Unconstrained" method in the results. The

second objective, which attempts to make the output probabilities of the original

and adversarial examples as similar as possible, is labeled as "Constrained" in the

results. The two hyperparameters α, β for the second objective are both set to

one. For both objectives, ϵ, which determines the maximum size of the adversar-

ial perturbation, is set to 2. For each example, the value of k, which determines

the number of attribution positions to try and minimize in the distance function

D, is set to 15% of the length of the sentence, rounding down. Each example is

optimized using gradient descent for 500 steps, with a learning rate of 0.1. The

learning rate is halved every 200 steps. If the difference between the perturbation

δt at timestep t and δt−1 from the previous step is smaller than 1e-5 for 20 steps,

then the optimization is terminated early. The results for this experiment are given

in Sections 4.1.6 and 4.2.6.

3.6 Model Architectures

For both of the evaluation datasets, and the layer randomization, ensemble, and

adversarial experiments, we evaluate language models along two different dimen-

sions. One set of models has the same architectures and pretraining regimens, but

differ in size. The other has models of similar sizes, but different architectures and

pretraining objectives. Overviews of the different models and training parameters

are provided in the rest of this section.
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3.6.1 Scaling Comparisons

To compare explanations generated for models of different scales, we use four

pretrained T5 [42] models of different sizes. The T5 architecture is roughly sim-

ilar to the original transformer paper [57], with a few minor changes. T5 uses an

altered form of layer normalization (without the usual bias term) and replaces the

fixed positional embeddings in the original Transformer with relative positional

embeddings [47]. The four pretrained models used in our experiments come from

[54], which trained and released a large number of different T5 models of varying

configurations. Specifically, we use the Tiny, Mini, Small and Base models from

[54], which are all structurally similar but increasing in size. The four models have

approximately 16 million, 31 million, 60 million and 220 million parameters re-

spectively. All four models were pretrained for 219 steps on the Colossal Cleaned

Common Crawl Corpus [16]. For these experiments, because we only consider

classification tasks and not sequence generation, only the encoder portion of these

models is needed. The final parameter counts without the decoders are approxi-

mately 11, 20, 35 and 110 million (following the same order as above).2

Name Number of Parameters (Millions)
T5 Tiny 11
T5 Mini 20
T5 Small 35
T5 Base 110

Table 3.1: Number of Parameters in the Different Neural Architectures used in the
Scaling Experiments

2The parameter counts are not strictly half the original values due to shared parameters (like
word embeddings) between the encoder and decoder
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3.6.2 Architecture Comparisons

To compare language models with different architectures, pretraining objectives

and pretraining data, we finetune four commonly used pretrained models of simi-

lar sizes: BERT [14], T5 [42], GPT2 [41], and RoBERTa [35]. Each of these mod-

els has around 110 million to 120 million parameters. Additional details about the

structure and pretraining of each model follows.

3.6.2.1 BERT

BERT [14] is an encoder-only transformer pretrained on the BooksCorpus dataset

[69] and text passages scraped from English wikipedia. The attention blocks in

the BERT model are identical to those in the original transformer encoder. The

pretraining tasks are masked language modeling, as described in section 2.1.3,

and a next sentence prediction task. For this second task, a pretraining sentence

is input to the model along with the correct next sentence 50% of the time and

a random sentence from the dataset the other 50%. Sentences are separated by

a ‘[SEP]’ token added between them. The embedding of a special ‘[CLS]’ to-

ken appended to the beginning of each input is then used to predict if the next

sentence is the correct one. [14] include this additional pretraining task to im-

prove performance on question-answering and natural language inference tasks.

In these experiments, we use the BERT-base model, which has twelve layers, 768-

dimensional embeddings, and a 30,000 token vocabulary. It has approximately

109 million parameters.

When finetuning BERT for classification tasks, the standard approach is to use the

embedding for the ‘[CLS]’ token as a representation of the whole sentence. To

make a prediction, only the embedding for ‘[CLS]’ is taken from the output and

passed through the final classification layer. This means that the embedding for
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that token adjusts during finetuning to represent the task-relevant information for

the whole sentence.

3.6.2.2 T5

T5 [42] is an encoder-decoder model. It is similar to the original transformer

architecture, with the modifications already mentioned in section 3.6.1. It is worth

noting that we use the base T5 model released from [42] for these experiments,

not the one from [54] used in the scaling experiments. This version was pretrained

on the Colossal Clean Crawled Corpus as well, but was additionally trained on a

mixture of supervised language tasks, totaling approximately 1 trillion tokens of

pretraining data. This model has 12 layers each for the encoder and decoder, and

an embedding dimension of 768. Its vocabulary size is 32,128. This amounts to

approximately 220 million parameters in total, which becomes around 110 million

in this case since the decoder is unneeded. Unlike BERT, T5 does not add a special

classification token to the start of the input, so we instead use the average of the

output embeddings as input to the classification layer.

3.6.2.3 GPT2

GPT2 [41] is a decoder-only transformer. It is generally similar to the decoder of

the original transformer, but uses a gaussian error linear unit (GELU) as its acti-

vation function, instead of ReLU, and learned positional embeddings, instead of

static ones. It also does not include the cross-attention layers in the original trans-

former decoder (as there is no encoder output to cross-attend to in this context).

The model is pretrained on the WebText dataset, which consists of ~40GB of text

scraped from various websites.

Because it is a decoder model, elements in the input sequence only have non-zero

attention values for tokens to their left. For finetuning on classification tasks, then,
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we take the embedding of the last token, which can attend to the entire input, as

a representation of the sentence and use it as input to the classification head. The

complete GPT2 model has approximately 1.5 billion parameters, which is clearly

significantly larger than the other models described here. We use the smaller

version released in the same paper (see Table 2 in [41]), which was pretrained in

the same way. This model has 12 layers, 768 dimensional embeddings and 50,257

token vocabulary. The total number of parameters is around 124 million.

3.6.2.4 RoBERTa

RoBERTa [35] is an encoder-only model, nearly identical to BERT. RoBERTa

was published as a replication of BERT that thoroughly examined the impact of

training and architectural parameters on performance. The encoder itself is the

same in both cases, but RoBERTa has a larger vocabulary than BERT (50,000

vs. 30,000), is pretrained on significantly more data and with larger batches, and

does not use the next-sentence prediction task from BERT during pretraining.

Classification finetuning is done in the same way as BERT, taking the ‘[CLS]’

token as a representation of the sentence. The base RoBERTa model that we

use has 12 layers and 768 dimensional embeddings, for a total of ~124 million

parameters.

3.6.3 Training

The finetuning process for all eight models and both datasets described above are

the same. All models are finetuned for 10 epochs, with a batch size of 16 and a

learning rate of 5e-5. The learning rate follows a linear warmup for the first 6%

of training steps, and then decays linearly back to zero after that. Finetuning stops

early if the validation accuracy fails to increase for 5 epochs. The scheduling and

parameters used here are similar to those used across the finetuning literature [14,
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54, 35, 41], and our validation performance on these tasks across models after

finetuning is roughly on par with prior published results.

Experiment and Model Summary

We use five different experimental setups/datasets to evaluate the quality of

different explanation methods:

1. Section 3.1: An augmented version of the SST sentiment analysis

dataset where the ground truth feature attributions are known.

2. Section 3.2: Two natural language inference datasets (MultiNLI and e-

SNLI), where we evaluate explanations using Sufficiency and Compre-

hensiveness (Section 2.2.3.2)

3. Section 3.3: The parameter randomization tests proposed in [2], where

explanation sensitivity is measured using the Spearman rank correlation

between explanations of the original model and the randomized ones.

4. Section 3.4: Two different ensembles of explanation methods, to assess

if combining methods together can improve performance.

5. Section 3.5: Two different objectives for generating adversarial ex-

amples, to evaluate the adversarial robustness of different explanation

methods.

These five evaluations are applied to eight different language models. Four

of them are T5 models with identical pretraining data, and similar archi-

tectures, which differ only in their number of parameters. The other four

are different pretrained models, but of similar size: T5 Base, BERT Base,

RoBERTa Base and GPT2 Small. Each of these eight models are trained

on the two datasets described above, and layer randomization and ensem-

ble results are generated for each one. This results in a total of twenty-four

models for comparison.

46



4 | Results

This section shows the results for each of the previously described experiments.

We finetune each model (four in the scaling setting, and four in the architectural

setting) on each dataset, for a total of 24 models. Next, we generate explana-

tions for each model using seven different explanation methods. The results here

compare those explanations using the evaluation metrics relevant for each dataset

(described in Section 2.2.3). There is also a random explanation included as a

baseline. A random explanation is generated by taking a random permutation of

(1...|x|), where |x| is the number of tokens in an input sequence x. The permuta-

tion then serves as a random ranking of the features.

The layer randomization results in each section only include five of the seven

explanation methods (excluding LIME and SHAP). LIME and SHAP train sur-

rogate models to approximate the input-output behavior of the underlying model

(and do not use the parameters directly as the other five methods do), therefore the

layer randomization setup does not apply to them. The adversarial example results

include only the three gradient-based methods, Gradients, Gradients*Inputs and

Integrated Gradients, as they are fully differentiable.

4.1 Scaling

The following figures show comparisons between the number of parameters in

four T5 encoders (ranging from approximately 10 million to 110 million) and

the quality of explanations (as measured by several different metrics). Each line

in each graph represents a different explanation method, and each of the four

data points determining a line are determined by the explanations for that method

of outputs from one of the four differently-sized T5 models. All shaded regions
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represent 95% confidence intervals1, and all values are averaged over explanations

for 500 samples, with the exception of the layer randomization results, which are

averaged over 50 samples.

The layer randomization experiment requires generating 2L explanations per model

(L explanations each for both the independent and cascading cases), where L is

the number of layers in the model. Given the number of models evaluated, their

depth, and the complexity of the explanatory methods2, we use 50 samples as it is

computationally feasible yet provides a sufficient number of examples for a good

quality explanation.

The adversarial example experiment is more computationally intensive than the

layer randomizations, as generating an adversarial example requires a gradient-

descent optimization procedure. At each step of gradient descent, forward passes

of the underlying language model and backward passes to generate explanations

are required. This can require 500 forward and backward passes per example (or

more in the case of Integrated Gradients, which uses multiple backward passes).

Because of the compute-intensive nature of this experiment, we generate adver-

sarial examples for 16 datapoints for each model-dataset combination.

4.1.1 SST

For the SST experiments, the ground truth feature importances are known because

of how we construct the dataset (described in Section 3.1). Consequentially, the

generated explanations can be compared to the ground truth to measure their faith-

1Confidence Intervals are computed via the bootstrapping procedure built into the Seaborn
plotting library (https://seaborn.pydata.org/)

2For example, LIME and SHAP both have approximate complexities of at least O(n∗m∗k2),
with n,m, k being the number of datapoints to explain, the number of perturbed samples, and the
number of features, respectively. This is ignoring the cost of generating the perturbed samples,
which adds an additional O(n) forward passes of the underlying model.
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(a) Ground Truth Overlap (b) Mean Rank Percentage

Figure 4.1: Ground truth metrics for explanations of four T5 models finetuned on
the augmented SST dataset. The x axis is the number of parameters in each of
the four T5 models. The y axis is either the Ground Truth Overlap or Mean Rank
value (Section 2.2.3.1). Faithful explanations will have high values for Ground
Truth Overlap and low values for Mean Rank. The values are averaged over 500
examples and shown with 95% confidence intervals. Note that the lines for LIME
(red), KernelSHAP (purple) and Integrated Gradients (green) overlap for signifi-
cant portions of both graphs (at 1.0 for figure (a) and 0.1 for figure (b)).

fulness. We do this using two measures: Ground Truth Overlap and Mean Rank

(see Section 2.2.3.1).

Figure 4.1 shows the performance of all seven explanation methods across four T5

models of different scales on the two metrics. The best performing methods across

all model sizes are Integrated Gradients, LIME and KernelSHAP, which generally

always rank the added feature most highly (although LIME performs somewhat

poorly for the smallest model). Gradients and Gradients*Input perform signifi-

cantly worse, only slightly outperforming the baseline random explanations at all

but the smallest scale. The two attention explanations have the greatest amount of

variation. Focusing on the ground truth overlap results, Figure 4.1(a), Attention

Rollout fails to rank the added token as most important at any scale except the 2nd

smallest, where it always does so. Average Attention, on the other hand, has better
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(a) Comprehensiveness (b) Sufficiency

Figure 4.2: Comprehensiveness and Sufficiency for explanations of four T5 mod-
els of different sizes finetuned on the augmented SST dataset. The x axis is the
number of parameters in each model. The y axis is the either Comprehensiveness
or Sufficiency (Section 2.2.3.2). Faithful explanations should have high Com-
prehensiveness values and low Sufficiency values. Values are averaged over 500
examples and shown with 95% confidence intervals. Note that in (b), LIME (red),
KernelSHAP (purple) and Integrated Gradients (green) all mostly overlap along
y = 0.1.

performance at the smallest scale, and then fails to prioritize the added token after

that. While these differences seem extreme, Figure 4.1(b) provides some expla-

nation. The mean-rank for both Attention Rollout and Average Attention is quite

low, fluctuating between 0.2 and 0.1. This means that even in the cases where they

fail in terms of ground truth overlap, the correct token is still very highly ranked.

Previous work has noted that gradient-based explanations can be noisy and mis-

leading, due to issues like gradient saturation [53] or sharp fluctuations of the

gradient around the datapoint [49]. Factors like these could explain the poor per-

formance of Gradients and Gradients*Input. Attention explanations have also

been critiqued in prior literature as potentially unfaithful, due to a lack of correla-

tion with other explanation methods and the ability to construct multiple attention

sets of attention values that give equivalent predictions [30]. In this context, those
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criticisms of attention explanations may hold, and could be compounded by the

stacking of multiple attention computations in transformer models, which mixes

information across tokens, making the attention values for embeddings in later

layers less directly representative of the corresponding input tokens than earlier

layers (see Section 2.2.2.3).

Figure 4.2 shows similar results for Sufficiency and Comprehensiveness, the two

perturbation based metrics described in Section 2.2.3.2. As mentioned in that sec-

tion, higher values of Comprehensiveness and lower values of Sufficiency are bet-

ter. With that in mind, the trends across all model scales match those in the ground

truth metrics. LIME, Integrated Gradients and KernelSHAP all have the highest

values for Comprehensiveness and the lowest values for Sufficiency. The Com-

prehensiveness values for all three methods are around 0.5, meaning that when the

top ranked tokens are masked out, the prediction tends to decrease by 0.5. This

makes sense in this context, as the added ‘positive’ or ‘negative’ token will always

be the most highly ranked (based on Figure 4.1). When that token is masked out,

the sentence becomes neutral (for this synthetic task), and a prediction of 0.5 is

expected. A decrease in the predicted probability from 1.0 3, the prediction with

the added token, to 0.5 is then the greatest change we would expect to see.

The two attention methods have lower Comprehensiveness values and higher Suf-

ficiency values than the top three methods, making them less faithful (for this task)

than those top performing approaches. As shown in the results for the ground truth

metrics, the attention methods frequently ranked the predictive token as the sec-

ond most important token, rather than the most important. Knowing this, these

results are sensible. When computing Comprehensiveness, if only the top token

is masked out (which would correspond to a low value of k for most sentences,

3We know the prediction is 1.0 in this case (or extremely close) because the underlying classi-
fication model solves this task perfectly and achieves 0 loss.
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see Section 2.2.3.2), but the predictive token is left unmasked, we would see no

change in the output prediction. Conversely, for Sufficiency, the predictive token

would be more frequently removed if it is ranked lower than first, leading to a

greater change in ouput. On average, then, it makes sense that the Comprehen-

siveness and Sufficiency values for these two methods fall slightly below LIME,

SHAP and Integrated Gradients.

The Gradients and Gradients*Input methods have the lowest values for Compre-

hensiveness and the highest values for Sufficiency. This matches the trends in the

ground truth metrics for these two methods, which often did not rank the predic-

tive token the most highly, or place it near the top of the rank (like the attention

methods). This is likely due to the more general issues with gradient methods

mentioned earlier in relation to the ground truth results [49, 53].

4.1.2 MultiNLI

(a) Comprehensiveness (b) Sufficiency

Figure 4.3: Comprehensiveness and Sufficiency for explanations of four T5 mod-
els of different sizes finetuned on MultiNLI. The x axis is the number of parame-
ters in each T5 Model. The y axis is the Comprehensiveness or Sufficiency value.
Faithful explanations should have high Comprehensiveness values and low Suffi-
ciency values. The values are averaged over 500 examples and shown with 95%
intervals.
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The augmented SST dataset is a synthetic setup. It allows us to isolate a particu-

lar feature that we know is important, but that construction also makes it difficult

to know how different explanation methods will transfer to more complex tasks

and datasets. Figure 4.3 shows Comprehensiveness and Sufficiency results for the

four T5 models trained on MultiNLI, which is a significantly more challenging

dataset than the previous SST case. MultiNLI requires inferring the truth of some

hypthothetical statement given some premise, which requires more complex lin-

guistic reasoning than the SST experiment, in which the labels are determined by

the presence of a single word. The overall trends are consistent with those of the

previous results, with LIME, KernelSHAP and Integrated Gradients having the

highest Comprehensiveness values and lowest Sufficiency values. However, all

explanation methods tend to be less effective for this more complicated task. The

highest Comprehensiveness value (for KernelSHAP) is around 10% lower than in

the SST case, and the lowest Sufficiency value (also for KernelSHAP) is around

10% higher.

4.1.3 e-SNLI

Figure 4.4 shows the Comprehensiveness and Sufficiency results for the models

trained on e-SNLI. The overall trends are consistent with the MultiNLI results,

in that the same three methods tend to perform best (LIME, Integrated Gradients

and KernelSHAP). Certain individual rankings shift (e.g. Integrated Gradients has

slightly lower Comprehensiveness compared to LIME for e-SNLI, but is higher

for MultiNLI), but the general divide between the top three methods and the rest

persists.

e-SNLI also has labels for what words in each input human annotators thought ex-

plained each classification. These annotations (generally called rationales) can be

used to see how well the explanations from each method correspond to those gen-
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(a) Comprehensiveness (b) Sufficiency

Figure 4.4: Comprehensiveness and Sufficiency for explanations of four T5 mod-
els of different sizes finetuned on e-SNLI. The x axis is the number of parameters
in each T5 model. The y axis is the Comprehensiveness or Sufficiency value.
Faithful explanations should have high Comprehensiveness values and low Suffi-
ciency values. The values are averaged over 500 examples and shown with 95%
confidence intervals.

(a) Ground Truth Overlap (b) Mean Rank Percentage

Figure 4.5: Ground Truth Overlap and Mean Rank between human rationale an-
notations and explanations of four T5 models of different sizes finetuned on e-
SNLI. The x axis is the number of parameters in each T5 model. The y axis is the
Ground Truth Overlap or Mean Rank value, using human rationale annotations as
the ground truth for comparison. Plausible explanations should have high Ground
Truth Overlap and low Mean Rank values. The values are averaged over 500 ex-
amples and shown with 95% confidence intervals.

54



University of Oxford Department of Computer Science

erated by humans. This has no bearing on faithfulness, as an explanation method

could generate something that matches a human’s explanation but fails to reflect

the underlying model behavior. Despite that, it is useful to consider this metric

(often called plausibility), as in practice people will be more likely to accept and

trust plausible explanations. Ideal explanations would then be both faithful and

plausible. By converting the rationales to binary vectors (1 for highlighted words

and 0 otherwise), we can compare explanations to the rationales in the same way

as the ground truth attributions in the SST experiment. Figure 4.5 shows results for

both of the ground truth metrics using a modified version of those in section 4.1.1.

The ‘ground truth’ in this case is just the annotated rationales, rather than known

feature attributions. None of the methods produce particularly plausible expla-

nations, with at most 40% overlap for Integrated Gradients (a small improvement

considering the random baseline overlaps 20% of the time). The mean rank values

are similarly poor, with most methods requiring between 60 and 80 percent of the

complete ranking before recovering the complete rationales.

4.1.4 Layer Randomizations

Figures 4.6 and 4.7 shows the results of the layer randomization experiments

across all four sizes of T5 model. The results shown are for the augmented SST

models. The analogous figures for models trained on MultiNLI and e-SNLI are in

the appendix, but show the same trends as the figures here.

The gradient-based methods are all generally sensitive to randomizations in the

parameters at any layer in the models and at any size. For both independent

and cascading randomizations, the rank correlation between the original expla-

nation and the partially randomized ones drops nearly to zero at all layers. The

two attention methods are less sensitive to parameter changes. Average Attention

shows gradually decreasing correlations from the last layer to the first across all
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cases. Attention Rollout shows a similar declining trend for the smaller models,

but changes in larger models, with perfect correlation in deeper layers and then a

rapid decrease to zero correlation in the final few layers.

The rapid decrease in correlation for gradient methods is understandable, as the

gradient value, by definition, is tied to value of the parameters. For example,

randomizing any layer could cause the sign of the gradient to flip, which in turn

would cause a large change in correlation. The gradual decrease of Average At-

tention can also be explained. Because the Average Attention explanation is just

an average of all the attention values generated by the model for an input, if the

weights are randomized at the last layer, only the last attention values are affected.

This means that only one term out of the total average is changed. Randomizing

an earlier layer will also affect the attention values of all the following layers, and

so the overall average will shift by a larger amount. This sequential relationship

explains the mostly monotonic decrease in correlation for Average Attention. The

behavior for Attention Rollout is more complex. For smaller models, such as T5

Tiny or T5 Mini, the change in correlation roughly matches that of Average At-

tention, and can be explained via similar reasoning. For larger models, though,

Attention Rollout tends to be invariant to changes in the parameters of later lay-

ers. The multiplication of attention matrices that determines the Attention Rollout

explanation seems to reach a fixed point after the first few layers, after which the

additional multiplications reproduce the same values.

The gradient-based methods here are all clearly dependent on the model param-

eters, although this does not hold for all explanation methods that use gradients

[2]. Average Attention shows a clear linear dependence on the parameters, and At-

tention Rollout is invariant to parameter changes in deeper layers of larger trans-

formers. Both of these methods may be useful for explaining smaller transformer

models, where there would be a stronger relationship between the model parame-
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ters and the produced attention values. However, for deeper transformer models,

the explanations would be untrustworthy, as the later layers could be very rele-

vant to determining the overall output, but would have little to no impact on the

resulting attention-based explanations.

(a) T5 Tiny (b) T5 Mini

(c) T5 Small (d) T5 Base

Figure 4.6: Spearman Correlations between explanations generated via cascading
layer randomization (Section 3.3). Layer randomization was applied to four T5
models of differing sizes finetuned on the augmented SST dataset. The x axis is
the layers of each model. The y axis is the rank correlation between the original
explanation and the explanation produced by the same method when the model
has been randomized up to the corresponding layer on the x axis. Randomization
starts from the last layer and goes backward (from left to right in the graph).
Faithful explanations should have decreasing correlations (or decrease all the way
to zero) as layers of the model are randomized. High correlations indicate a lack
of sensitivity to model parameters (i.e. unfaithful explanations).
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(a) T5 Tiny (b) T5 Mini

(c) T5 Small (d) T5 Base

Figure 4.7: Spearman Correlations between explanations generated via indepen-
dent layer randomization (Section 3.3). Independent layer randomization was ap-
plied to four different T5 models of increasing size finetuned on the augmented
SST dataset. The x axis is the layers of each model. The y axis is the rank corre-
lation between the original explanation and the explanation produced by the same
method when the model parameters at the corresponding layer on the x axis have
been randomized. Faithful explanations should have low correlations for each
layer of the model except "Full", the original explanation on the far left.

4.1.5 Ensembles

Figure 4.8 shows the ground truth overlap and mean rank results for the two dif-

ferent ensemble methods applied to the models trained on the augmented SST

dataset. LIME, SHAP and Integrated Gradients are included for comparison.

Both ensembles perform as well as the best individual methods, so there is no

drop in performance when averaging the explanations together. Figure 4.9 shows

the Comprehensiveness and Sufficiency results. Ensembling does not appear to

improve either metric, and both ensembles perform slightly worse than the best

58



University of Oxford Department of Computer Science

(a) Ground Truth Overlap (b) Mean Rank Percentage

Figure 4.8: Ground truth metrics for ensemble explanations of four T5 models
of differing size (finetuned on the augmented SST dataset). LIME, SHAP and
Integrated Gradients are included for comparison. The x axis is the number of
parameters in each T5 model. The y axis is the Ground Truth Overlap or Mean
Rank value. Faithful explanations should have high Ground Truth Overlap and
low Mean Rank values. The values are averaged over 500 examples and shown
with 95% confidence intervals. Note that the lines for all methods overlap almost
completely at 1.0 in 4.8a and 0.1 in 4.8b.

individual methods. Analogous Comprehensiveness and Sufficiency figures for

the MultiNLI and e-SNLI models are given in the appendix, and show similar

trends. This roughly equal performance of the ensembles is expected as we are

averaging a group of equally performing methods, but it does suggest that the

methods are generating correct and incorrect explanations for similar examples.

If different methods were generating significantly different explanations for the

same example, we would expect to see more variation in the performance of the

ensembles.

4.1.6 Adversarial Examples

Figures 4.10 and 4.11 show the results for the adversarial example experiments

across all four T5 models of different sizes. The Rank Change and Top-k Sum
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(a) Comprehensiveness (b) Sufficiency

Figure 4.9: Comprehensiveness and Sufficiency for ensemble explanations of four
T5 models of different sizes (finetuned on the augmented SST dataset). LIME,
SHAP, and Integrated Gradients are included for comparison. The x axis is the
number of parameters in each model. The y axis is either the Comprehensive-
ness or Sufficiency value. Faithful explanations should have high Comprehen-
siveness and low Sufficiency values. The values are averaged over 500 examples
and shown with 95% confidence intervals. Note that in (b), all methods mostly
overlap along y = 0.1.

Change metrics measures the impact of the adversarial examples on explanations,

while Probability Change measures how much different the adversarial example’s

output probability is from the original input (see Section 2.3). A robust explana-

tion method should have low values for Rank Change and Top-k Sum Change,

and an ideal adversarial example should have high values for Rank Change and

Top-k Sum Change as well as a low value for Probability Change. While the

smaller sample size and large confidence intervals makes strong conclusions dif-

ficult, Integrated Gradients appears to be slightly more robust than Gradients and

Gradients*Input, which both have higher Rank Change values. However, Inte-

grated Gradients has slightly higher values for Top-k Sum Change, indicating that

Gradients and Gradients*Input may be susceptible to large rank changes via small

alterations of the attribution values. In all cases, a substantial portion of the rank-

ing can be changed (approximately 40%) even if the Top-k Sum Change values
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Figure 4.10: Rank Change and Top-k Sum Change values for adversarial exam-
ples generated for explanations of four T5 models of different sizes (finetuned
on the augmented SST dataset). The x axis is the number of parameters in each
model. The y axis is the Rank Change or Top-k Sum Change value. Adversarially
robust methods should have low Rank Change and Top-k Sum Change values. The
solid lines are values for examples generated using the unconstrained objective,
and the dotted lines are for examples generated using the constrained objective.
The values are averaged over 16 examples and shown with 95% confidence inter-
vals.

appear low.

A separate point of interest is the relatively similar performance of the Constrained

and Unconstrained objectives. The two objectives perform similarly for Gradi-

ents*Input and Integrated Gradients, despite the more difficult objective of the

Constrained case. Gradients shows a larger gap between the two objectives, as the

Unconstrained objective appears to find adversarial examples with higher Rank

Change values and Top-k Sum Change values than the Constrained one. The

similarity of these results across the two objectives suggests that there may be ad-

versarial examples that are more similar to the original inputs while still changing

the explanation as much as more dissimilar examples. These examples may be

missed by the objective that only constrains the predictions to be equivalent, but

are found when trying to maintain equal probabilities instead.

Figure 4.11 provides some evidence for this. The Unconstrained objective results
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Figure 4.11: Probability Change values for adversarial examples generated for
explanations of four T5 models of different sizes (finetuned on the augmented
SST dataset). The x axis is the number of parameters in each model. The y axis
is the Probability Change value. Lower values are preferable. The solid lines are
values for examples generated using the unconstrained objective, and the dotted
lines are for examples generated using the constrained objective. The values are
averaged over 16 examples and shown with 95% confidence intervals. Note that
all three constrained lines and the solid line for Integrated Gradients overlap at
0.0.
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in a change in output probability for two of the three methods, Gradients*Input

and Gradients. The Constrained objective, in contrast, finds adversarial examples

that match the original output probability perfectly and so all methods have a value

of 0 across all model scales. The augmented objective then appears to find adver-

sarial examples that are nearly as effective as the unconstrained case, and that are

significantly more similar in terms of output probability, a desirable quality when

attacking explanations instead of predictions. Additional figures with analogous

results for MultiNLI and e-SNLI are given in the appendix.

Scaling Experiments Summary

Increasing the scale of transformer models appears to have relatively lit-

tle impact on the faithfulness of explanations. The same three methods

(LIME, SHAP, and Integrated Gradients) were consistently the best per-

forming across multiple scales and datasets, and the faithfulness of each

method individually tended to vary by small amounts as the number of pa-

rameters increased. Gradients, Gradients*Input and both attention methods

did vary more widely in Figure 4.1a, but the corresponding rank values in

Figure 4.1b are still mostly flat, indicating that the shifts may be caused by

small changes in the rankings that explanations produce (e.g. a feature mov-

ing from the second highest position to the highest). Overall, most methods

were consistent in their behavior across all model scales. Additionally, the

adversarial results showed that Integrated Gradients may be slightly more

robust to adversarial perturbations than Gradients and Gradients*Inputs,

and also provided some evidence that the augmented adversarial objective

we propose finds effective adversarial examples while matching the original

output probability more closely than the Unconstrained objective.
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4.2 Architectures

The results in this section show the breakdown of the different experiments across

different architectures. The figures in this section compare the four different pre-

trained models described in Section 3.6.2. The black lines on each bar represent a

95% confidence interval 4, and values for each method are averaged over 500 ex-

amples. The layer randomization experiments are performed in the same way as

Section 4.1, as we have one figure per model in both sets of experiments, and the

correlation values are averaged over 50 examples. The adversarial experiments

are also averaged over 16 examples, as in the scaling experiments.

4.2.1 SST

(a) Ground Truth Overlap (b) Mean Rank Percentage

Figure 4.12: Ground Truth Overlap and Mean Rank for explanations of four dif-
ferent pretrained models trained on the augmented SST dataset. The x axis is the
name of each of the pretrained models. The y axis is either the Ground Truth
Overlap or Mean Rank value. Faithful explanations should have high Ground
Truth Overlap values and low Mean Rank values. The values are averaged over
500 examples, and the black bars indicate 95% confidence intervals.

In this experiment, we train models on an augmented version of the SST dataset,

where an added special token is the only feature that determines the label. The cor-

4Confidence intervals are computed using the bootstrapping procedure in the Seaborn plotting
library (https://seaborn.pydata.org/).
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(a) Comprehensiveness (b) Sufficiency

Figure 4.13: Comprehensiveness and Sufficiency for explanations of four different
pretrained models trained on the augmented SST dataset. The x axis is the name of
each pretrained model. The y axis is either the Comprehensiveness or Sufficiency
value. Faithful explanations should have high Comprehensiveness values and low
Sufficiency values. The values are averaged over 500 examples and shown with
black bars indicating 95% confidence intervals.

rect feature attribution is then known, since the special token is the only predictive

feature. Figure 4.12 shows the results for the two ground truth measures across

all four models, comparing the known feature attributions with the generated ex-

planations. Each bar in the bar graph represents a different explanation method.

In general, there is a great deal of variance across all models for both measures.

Integrated Gradients tends to be the best performing, working particularly well

for T5, GPT2 and BERT. However, it is significantly less effective for RoBERTa.

LIME and KernelSHAP, the other two highest performing methods in the scaling

experiments, vary widely in terms of performance. LIME works extremely well

for T5, but is middling for RoBERTa and BERT and poor for GPT2. KernelSHAP

is similar, although its performance on T5 more closely matches its performance

on RoBERTa and BERT. Gradients tends to perform approximately as well as the

random baseline, exceeding it for T5 and RoBERTa Base, but underperforming it

for GPT2 and BERT. Gradients*Input always outpeforms the random baseline, al-

though not by a significant margin. Lastly, the two attention methods fail to assign

the highest attribution to the added token across all models, but diverge in terms of
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their Mean Rank values. Average Attention achieves a relatively low Mean Rank

value compared to the top three performing methods (excepting GPT2), while

Attention Rollout only outperforms the random baseline’s Mean Rank for T5.

One possible explanation for the stark difference in performance for LIME and

KernelSHAP on GPT2 is that GPT2 is an autoregressive language model, while

the other three models are bidirectional. A crucial component of an autoregressive

language model is that the attention matrix is masked so that a token can only

have non-zero attention values for tokens to its left. Interventions made by LIME

or KernelSHAP that alter earlier tokens in the input may then have an outsized

impact on the output, as those earlier tokens affect the attention values of all the

tokens that come after them.

To similarly understand the behavior of the attention explanations, we need to

separately consider their application to bidirectional and unidirectional models.

For the bidirectional models (T5, RoBERTa, BERT), the low Ground Truth Over-

lap and high Mean Rank values of the attention explanations, as compared to the

earlier scaling experiment results (Section 4.1.1) where the Mean Rank values

matched the top three methods, is likely a combination of two factors. The first

is one previously discussed in the scaling section, where the spurious token is

frequently near the top of the ranking, despite never being the top ranked feature

(the relatively low mean rank for T5 Base provides some evidence for this). The

second problem is that the greater depth of these models means attention becomes

an increasingly poor proxy for input feature importance. At each layer, the input

features become more entangled via self-attention, and the resulting contextual-

ized embeddings are less representative of the original input token in that position.

As all of these models are relatively deep, the attention values assigned to embed-

dings in deeper layers may not reflect the importance of the feature originally at

that position. This is in addition to other previously noted concerns regarding the

66



University of Oxford Department of Computer Science

use of attention values as forms of explanation [30].

For unidirectional models, like GPT2, all these issues hold, but with one addi-

tional concern. The left-to-right masking proposed as an explanation for LIME

and SHAP’s poor performance also affects the attention methods, by biasing the

attention values towards earlier tokens. Because of this bias, the earlier tokens in

the sequence will, on average, be given greater attributions. The Mean Rank value

of 1.0 for both attention methods, when applied to GPT2, supports this hypothe-

sis, as the predictive token is added to the end of the sentence. If the explanation

ranking is determined by the order of the tokens, then the entire ranking would be

needed to recover the predictive/last token, i.e. the Mean Rank of the explanation

would be 1.0.

We now consider the metrics that do not require ground truth attributions. Figure

4.13 shows the Sufficiency and Comprehensiveness results. For T5, RoBERTa

and BERT, the trends match those in the scaling experiments (Section 4.1.1. In-

tegrated Gradients, LIME and KernelSHAP have the highest Comprehensiveness

values and lowest Sufficiency values. Gradients and Gradients*Input perform the

worst, with values frequently around the random baseline performance. The two

attention methods fall in between, occasionally underperforming the random base-

line, as in Attention Rollout for RoBERTa, but also outperforming Gradients and

Gradients*Input in some cases, such as Average Attention and Attention Rollout

for T5 Base. The Comprehensiveness and Sufficiency results for GPT2 are quite

distinct from the other three methods. All the methods, including the random

baseline, perform roughly equally, with little of the variation seen across the other

models.

Understanding why this different behavior arises between GPT2 and the other

models requires considering how these models were originally trained. When
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perturbing inputs to measure Comprehensiveness and Sufficiency, certain tokens

in the input are replaced with special padding or masking tokens (depending on

which special tokens are defined for the model). The bidirectional models were

pretrained with a masked language modeling objective, where random tokens are

masked out and then predicted by the model, a process similar to the input per-

turbations used for Comprehensiveness and Sufficiency. GPT2, in contrast, was

trained with an autoregressive language modeling objective, where it only had to

predict the next word that followed after some input text. Because of this dif-

ference in pretraining objective, inputs with masked features may be significantly

more out-of-distribution (OOD) for GPT2 than they are for the other three models,

and the resulting prediction on perturbed inputs may be less reflective of predic-

tions made on in-distribution data. Large changes in prediction could then be

the result of the OOD nature of the input rather than the relevance of any actual

masked features, which would explain how even a random explanation, where the

features likely have no particular relevance, can still induce a large change in the

prediction (i.e. can still achieve relatively high Comprehensiveness).

This would also explain why GPT2 has roughly similar values for Comprehen-

siveness and Sufficiency. Compared to the other models, which have fairly signif-

icant gaps between Comprehensiveness and Sufficiency (particularly for methods

like LIME that perform well), the values for GPT2 are fairly close together for

all methods. If the change in prediction is due more to the existence of masked

tokens than to the actual tokens that were masked, we would expect Comprehen-

siveness and Sufficiency to produce approximately similar changes in prediction,

since they only differ in how they use the attributions to determine what features

should be masked.
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4.2.2 MultiNLI

(a) Comprehensiveness (b) Sufficiency

Figure 4.14: Comprehensiveness and Sufficiency for explanations of four differ-
ent pretrained models finetuned on MultiNLI. The x axis is the name of each pre-
trained model. The y axis is either the Comprehensiveness or Sufficiency value.
Faithful explanations should have high Comprehensiveness values and low Suffi-
ciency values. The values are averaged over 500 examples and shown with black
bars indicating 95% confidence intervals.

In the MultiNLI experiment, we train models on the MultiNLI dataset [62], and

then use Sufficiency and Comprehensiveness (see Section 2.2.3.2) to measure ex-

planation faithfulness. Figure 4.14 shows the Comprehensiveness and Sufficiency

results for the models trained on MultiNLI. This supports the previous results, in

that Integrated Gradients, LIME and KernelSHAP are consistently the best per-

forming, with the highest Comprehensiveness values and the lowest Sufficiency

values. We see similarly wide variation between models, such as the 20% differ-

ence in Comprehensiveness between RoBERTa and BERT, despite the fact they

are almost identical architectures.

As in Section 4.2.1, GPT2 shows significantly less variation across methods, and

a high performing random baseline. This is likely for the same reasons described

there, although there is more variation between Integrated Gradients and Ker-

nelSHAP and the other methods, suggesting that maybe the impact of the OOD

perturbed inputs is lessened for more complex tasks (i.e. the differences between
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methods are more severe, and so persist despite the OOD problem).

4.2.3 e-SNLI

(a) Comprehensiveness (b) Sufficiency

Figure 4.15: Comprehensiveness and Sufficiency for explanations of four different
pretrained models finetuned on e-SNLI. The x axis is the name of each of the
pretrained models. The y axis is either the Comprehensiveness or Sufficiency
value. Faithful explanations should have high Comprehensiveness values and low
Sufficiency values. The values are averaged over 500 examples and shown with
black bars indicating 95% confidence intervals.

(a) Ground Truth Overlap (b) Mean Rank Percentage

Figure 4.16: Ground Truth Overlap and Mean Rank between human rationale
annotations and explanations of four different pretrained models finetuned on e-
SNLI. The x axis is the name of each of the pretrained models. The y axis is the
Ground Truth Overlap or Mean Rank value, using human rationale annotations as
the ground truth for comparison. Plausible explanations should have high Ground
Truth Overlap and low Mean Rank values. The values are averaged over 500
examples and shown black bars indicating 95% confidence intervals.

In the e-SNLI experiment, we train each model on the e-SNLI dataset, which is a
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natural language inference dataset with additional annotations explaining the la-

bels, and use Comprehensiveness and Sufficiency to measure explanation faithful-

ness. Additionally, we use the annotations in e-SNLI to evaluate explanation plau-

sibility, the similarity of automated explanations to those given by humans. Figure

4.15 shows the Sufficiency and Comprehensiveness results for models trained on

e-SNLI. Overall, the results are very similar to those in Section 4.2.2. Integrated

Gradients, LIME and KernelSHAP are the best performing on the bidirectional

models, and GPT2 shows small variations across methods. LIME and Integrated

Gradients do slightly outperform other methods for GPT2, similar to the results in

the MultiNLI case.

The plausibility results for the e-SNLI models are shown in Figure 4.16. As in the

scaling case, all methods generate fairly implausible explanations. LIME, Ker-

nelSHAP and Integrated Gradients do slightly better than the others for the three

bidirectional models, but no method exceeds an overlap in the low 40% range.

For GPT2, Integrated Gradients generates slightly more plausible explanations

than other methods, although the margin is still quite small. Overall, the explana-

tions produced by these methods, despite varying in faithfulness, produce gener-

ally implausible explanations. Even those explanations generated by the highest

performing methods when measured by faithfulness metrics only match human

explanations a small fraction of the time (approximately 40% in the best cases).

4.2.4 Layer Randomizations

In the layer randomization experiment, we randomize the parameters of each

model and measure the similarity (via rank correlation) between explanations gen-

erated for the randomized model and for the original. A high degree of similarity

indicates that the explanation is independent of the model parameters, and there-

fore unfaithful to model behavior. Figures 4.17 and 4.18 show the layer random-
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(a) T5 Base (b) GPT2 Small

(c) RoBERTa Base (d) BERT Base

Figure 4.17: Spearman Correlations between explanations generated via cascad-
ing layer randomization (Section 3.3). Layer randomization was applied to four
different pretrained models finetuned on the augmented SST dataset. The x axis
is the layers of each model. The y axis is the rank correlation between the original
explanation and the explanation produced by the same method when the model
has been randomized up to the corresponding layer on the x axis. Randomization
starts from the last layer and goes backward (from left to right in the graph)

ization results for all four pretrained models. For all four models, every method

except those based on attention seems sensitive to parameter randomization, with

correlations between the original and randomized explanations dropping to zero

(or in some cases to a negative correlation, e.g. 4.18c) after just one or two layers

of randomization. For the bidirectional models, the attention methods for these

models show the same relationships seen in the scaling experiments, which are

discussed in 4.1.4. For GPT2, however, both attention methods seem entirely in-

variant to the parameters. Because the attention computation is masked in GPT2,

the resulting explanation values are skewed towards earlier inputs. Due to this,
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(a) T5 Base (b) GPT2 Small

(c) RoBERTa Base (d) BERT Base

Figure 4.18: Spearman Correlations between explanations generated via indepen-
dent layer randomization (Section 3.3). Independent layer randomization was ap-
plied to four different pretrained models finetuned on the augmented SST dataset.
The x axis is the layers of each model. The y axis is the rank correlation between
the original explanation and the explanation produced by the same method when
the model parameters at the corresponding layer on the x axis have been random-
ized.

the explanation ranking likely matches the ordering of the input tokens a signif-

icant portion of the time, and the ordering of the input tokens is independent of

the parameters. In that case, it would make sense that randomizing the model

parameters had little effect on the explanation rankings.

4.2.5 Ensembles

In this section we evaluate two different ensembles of explanations applied to four

pretrained models. One ensemble averages the attributions of all seven explana-

tion methods considered here together, while the other averages the attributions
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(a) Ground Truth Overlap (b) Mean Rank Percentage

Figure 4.19: Ground truth metrics for ensemble explanations of four different
pretrained models (finetuned on the augmented SST dataset). LIME, SHAP and
Integrated Gradients are included for comparison. The x axis is the number name
of each of the pretrained models. The y axis is the Ground Truth Overlap or Mean
Rank value. The values are averaged over 500 examples and shown with black
bars indicating 95% confidence intervals.

(a) Comprehensiveness (b) Sufficiency

Figure 4.20: Comprehensiveness and Sufficiency for ensemble explanations of
four different pretrained models (finetuned on the augmented SST dataset). LIME,
SHAP, and Integrated Gradients are included for comparison. The x axis is the
name of each of the pretrained models. The y axis is either the Comprehensiveness
or Sufficiency value. The values are averaged over 500 examples and shown with
black bars indicating 95% confidence intervals.

of the three best performing methods, LIME, SHAP and Integrated Gradients.

Figure 4.19 shows the ground truth results for the two ensembles across the four

different pretrained models. Ensembling the top three methods together works

well, approximately matching the best performing method in terms of Ground

Truth Overlap across all models. The three-method ensemble also matches the
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best method in terms of Mean Rank across all four models. The full ensemble is

equally effective for all models except GPT2, where it has a significantly lower

value for Ground Truth Overlap. The less faithful explanation methods may pro-

duce explanations with more consistent structure for GPT2 (e.g. the bias towards

earlier inputs in GPT2 attention explanations), which may skew the ensemble

more systematically. However, the complete ensemble still has a Mean Rank

value for GPT2 that is close to the best performing methods, suggesting that the

ensemble still improves the explanation, even if it does not give the added token

the greatest attribution.

Figure 4.20 shows the Comprehensiveness and Sufficiency results for the two en-

sembles. The ensembling provides little benefit for these two measures, perform-

ing on par with the best methods or worse (in the case of Comprehensiveness for

BERT base). The analogous results for MultiNLI and e-SNLI are given in the

appendix, and show similar trends to the SST results shown here.

4.2.6 Adversarial Examples

(a) Constrained Rank Change (b) Unconstrained Rank Change

Figure 4.21: Rank Change values for adversarial examples generated for explana-
tions of four different pretrained models finetuned on the augmented SST dataset.
The x axis is the name of each of the pretrained models. The y axis is the Rank
Change value. Robust explanations should have low values for Rank Change. The
values are averaged over 16 examples and shown black bars indicating 95% con-
fidence intervals.
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(a) Constrained Top-k Sum
Change

(b) Unconstrained Top-k Sum
Change

Figure 4.22: Top-k Sum Change values for adversarial examples generated for
explanations of four different pretrained models finetuned on the augmented SST
dataset. The x axis is the name of each of the pretrained models. The y axis is the
Top-k Sum Change value. Robust explanations should have low values for Top-k
Sum Change. The values are averaged over 16 examples and shown black bars
indicating 95% confidence intervals.

(a) Constrained Probability
Change

(b) Unconstrained Probability
Change

Figure 4.23: Probability Change values for adversarial examples generated for
explanations of four different pretrained models finetuned on the augmented SST
dataset. The x axis is the name of each of the pretrained models. The y axis is the
Probability Change value. Lower values are preferable. The values are averaged
over 16 examples and shown black bars indicating 95% confidence intervals.

Figures 4.21, 4.22 and 4.23 show the results of the adversarial example experi-

ments across all four pretrained models finetuned on the augmented SST dataset.

The values for the Constrained and Unconstrained objectives are presented side by

side for comparison. The figures showing Rank Change and Top-k Sum Change

for each of the models broadly agree with the trends in the scaling adversarial re-
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(a) Constrained Rank Change (b) Unconstrained Rank Change

Figure 4.24: Rank Change values for adversarial examples generated for explana-
tions of four different pretrained models finetuned on the MultiNLI dataset. The x
axis is the name of each of the pretrained models. The y axis is the Rank Change
value. Robust explanations should have low values for Rank Change. The values
are averaged over 16 examples and shown black bars indicating 95% confidence
intervals.

(a) Constrained Top-k Sum
Change

(b) Unconstrained Top-k Sum
Change

Figure 4.25: Top-k Sum Change values for adversarial examples generated for ex-
planations of four different pretrained models finetuned on the MultiNLI dataset.
The x axis is the name of each of the pretrained models. The y axis is the Top-k
Sum Change value. Robust explanations should have low values for Top-k Sum
Change. The values are averaged over 16 examples and shown black bars indicat-
ing 95% confidence intervals.

sults (see Section 4.1.6). Integrated Gradients has slightly lower Rank Values than

Gradients and Gradients*Inputs for two of the four models, although the margins

are small, and the confidence intervals overlap for several models. Also similar

to the scaling results, Integrated Gradients has slightly higher Top-k Sum Change

values compared to Gradients and Gradients*Input. This may be due to the possi-
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(a) Constrained Probability
Change

(b) Unconstrained Probability
Change

Figure 4.26: Probability Change values for adversarial examples generated for ex-
planations of four different pretrained models finetuned on the MultiNLI dataset.
The x axis is the name of each of the pretrained models. The y axis is the Prob-
ability Change value. Lower values are preferable. The values are averaged over
16 examples and shown black bars indicating 95% confidence intervals.

bility previously mentioned that Gradients and Gradients*Input could have their

rankings changed more significantly by small attribution alterations, leading to

small Top-k Sum Change values but larger Rank Change values. Overall, all four

models and three explanation methods seem vulnerable to adversarial examples.

The lowest Rank Change value is over 40%, with many values from 80-100%, in-

dicating that almost all of the top k ranked features are shifted to lower rankings.

We can additionally compare the two objective functions used to generate adver-

sarial examples for these models, and see if the new augmented objective, which

attempts to match the output probability of the original and adversarial examples,

provides any benefit. In this instance, based on Figure 4.23, the original objective

outperforms the augmented one. The Constrained objective finds matching adver-

sarial examples for T5 and GPT2, resulting in values of 0 in the figure, but changes

the output probability for RoBERTa and BERT. The original Unconstrained objec-

tive changes the output probability for GPT2, but not for the other three models,

which all have values of zero. However, the low change in probability for the

unconstrained objective may be due to the simplicity of the augmented SST task.
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Figures 4.24, 4.25 and 4.26 show the analogous results for models finetuned on

the MultiNLI dataset. The Rank Change values and Top-k Sum Change values

shown in 4.24 and 4.25 show roughly equal performance, with the Unconstrained

objective outperforming the Constrained objective by narrow margins. However,

the probability changes in Figure 4.26 are much greater for the Unconstrained ob-

jective than the Constrained one across all models. This suggests that, for more

complicated tasks like Natural Language Inference, it may be important to opti-

mize directly for matching probabilities, rather than only constraining predictions.

The analogous results for models finetuned on e-SNLI are given in the appendix,

and show similar trends to those finetuned on MultiNLI.
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Architecture Experiments Summary

As in the scaling experiments, the same methods (LIME, SHAP, and In-

tegrated Gradients) were the highest performing across all models and

datasets. The precise top performer was dependent on the context (e.g.

Integrated Gradients significantly outperforms the other methods in identi-

fying the most predictive feature for the SST-GPT2 combination), but one

of those three methods was always the best. Across models, though, there

is significant variation in the quality of explanations. While the relative

rankings of methods were stable, different models produced explanations

of widely varying faithfulness. GPT2 as compared to the other bidirec-

tional models is one clear example, but even between related models like

BERT and RoBERTa there is significant variation, such as the difference

in performance of Integrated Gradients in Figure 4.12a. Additionally, the

adversarial example results showed the susceptibility of these pretrained

models and explanation methods to adversarial perturbations of their in-

puts. The comparison of two objective functions for generating adversarial

examples further showed that our novel augmented objective can gener-

ate adversarial perturbations roughly on par with the original objective, and

with significantly differences in output probability between the original and

adversarial datapoints.
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Results Summary

Of the seven methods evaluated, Integrated Gradients, KernelSHAP and

LIME were consistently the best performing. Which method was the best

choice varied depending on the specific setup and model, but there was a

consistent gap between those three and the other four methods (with the ex-

ception of LIME and KernelSHAP’s poor performance on the GPT2-SST

combination). The two attention methods, Average Attention and Attention

Rollout, slightly outperformed the standard gradient methods, Gradients

and Gradients*Input, in several cases, but failed completely in other cases

(e.g. when applied to GPT2) showing that certain architectures can have

major impacts on the validity of attention as an explanation. Finally, Gra-

dients and Gradients*Input performed poorly across all combinations, only

slightly exceeding a baseline of randomly generated explanations. All three

gradient-based methods and all models were susceptible to adversarial per-

turbations in varying degrees, with Integrated Gradients showing slightly

more robustness than Gradients and Gradients*Input. Additionally, the ad-

versarial experiments provide evidence that our novel adversarial objective

produces adversarial examples as effective as the original objective [21] but

with output probabilities significantly closer to the original datapoints.
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5 | Discussion

5.1 Summary

Large language models are increasingly popular in both real-world applications

[23, 61] and as a topic of research [41, 10, 33, 55]. However, we lack the ability

to explain, at a human-comprehensible level, how these models determine their

outputs given input text, a disconnect which can allow a number of other concerns

in areas like machine learning fairness [40] and safety [20] to go unnoticed. Ma-

chine learning explainability is a subfield focused on solving this problem, and a

variety of different methods to generate explanations have been proposed in prior

literature [49, 53, 45, 36].

In this work we focus in particular on post-hoc feature importance explanations.

These methods are applied to a trained machine learning model and a single input

to that model, and assign an importance value to every feature in the input based

on that feature’s relevance to the model’s output. Evaluating the quality and ef-

fectiveness of these explanation methods is itself a difficult problem, and many

different frameworks have been proposed to benchmark them [65, 68, 2]. One

important criterion to evaluate is explanation faithfulness, which is the extent to

which an explanation accurately reflects the behavior of the model that it explains.

The experiments in this work measure explanation faithfulness across a variety of

different language model architectures, model sizes, and explanation methods.

Previous work primarily used the base BERT model when proposing frameworks

for measuring faithfulness, but a more thorough evaluation is necessary to under-

stand how well those explanation methods generalize to other kinds of language

models. Methods that work well for BERT will not necessarily be effective for

other architectures, or at other model scales, and so this broader evaluation is
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needed to understand the contexts in which different explanation methods will be

appropriate. We provide a systematic evaluation of several feature importance ex-

planation methods across a variety of different language models, applying several

different approaches to measuring faithfulness to build a broader and more robust

view of the applicability and efficacy of feature importance explanations to large

language models.

Overall, these experiments show a clear divide between three reasonably faith-

ful explanation methods, LIME, SHAP and Integrated Gradients, and four less

faithful explanation methods, Gradients, Gradients*Input, Average Attention and

Attention Rollout. Across models of different scales and architectures, the same

three methods were nearly always the best performing. However, these three are

also the most computationally intensive to use. Integrated Gradients requires ap-

proximating a path integral, and so computes many gradients via back-propagation

at different points between an input x and baseline value x′ (O(nm) for n ex-

amples and m samples). LIME and SHAP both require generating a dataset

of perturbed inputs and then training a linear model to generate an explanation

(O(nm + nmk2) for n examples of length k and m samples). Repeating this

process for multiple examples is quite slow. In comparison, Gradients and Gradi-

ents*Input require only a backward pass for each example (O(n)), and attention

methods require no additional computation beyond what is needed for model in-

ference (O(1)).

Additionally, while the ranking of the methods was fairly consistent, there was

still a great deal of individual variation in performance across different kinds of

models. For example, different explanation methods had drastically different per-

formances on bidirectional models (T5, BERT, RoBERTa) compared to unidirec-

tional ones (GPT2). Differences in design choices such as pretraining objectives,

vocabularies, tokenization schemes, attention mechanisms and more can have sig-
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nificant impacts on explanation quality, and it is unclear how to decide a priori

which method will work best for a particular model. LIME and SHAP, for exam-

ple, were frequently the best performing methods across various scales and kinds

of architectures, but almost completely failed to prioritize the added positive/neg-

ative token for GPT2. Integrated Gradients, on the other hand, performed quite

well across all models and then particularly well for the same GPT2 case.

In addition to the dataset and randomization focused evaluations, we also eval-

uated the adversarial robustness of several explanation methods, and proposed a

novel adversarial objective based on one proposed in [21]. The novel objective is

designed to encourage adversarial examples that are similar in probability, not just

in prediction, as those adversarial examples are more likely to rely on the same

features as the original datapoint. Our robustness experiments confirm prior ev-

idence about the susceptibility of explanation methods to adversarial attacks and

provide some evidence that our proposed objective can generate effective adver-

sarial examples while closely matching the output probability of the original input

datapoint.

Understanding exactly what aspects of model architecture and training determine

these behaviors is an important step towards understanding what explanations to

use in particular contexts. In terms of minimizing required compute while still

generating faithful explanations, Integrated Gradients appears to work best for the

models assessed here. Computing gradients for several samples to approximate

an integral is still faster than generating a dataset of perturbations and training

a linear model, and the resulting explanations were generally on par with those

from LIME and SHAP. Clearly, though, there is enough variation, even within the

related variants of transformers models, to justify including and assessing multiple

methods within the context of a particular domain or application.
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While this work covers a variety of different language models and explanation

methods, there are still significant limitations to these results. For example, there

are many more complex tasks in natural language processing that could require ex-

planation, and that are difficult to evaluate using the methods outlined here, such

as language generation or free-text question answering. There are also classes of

language models that are not evaluated here and would require an analogous eval-

uation, such as recurrent models [26]. Lastly, there are many feature importance

explanations not evaluated in this work [49, 5, 36, 45] and other forms of expla-

nation [58, 31, 29] that will require new approaches to evaluating faithfulness and

general explanation validity.

5.2 Further Work

The experiments presented here raise a lot of interesting questions, and there are

several additional experiments that could help clarify and confirm different as-

pects of the results. One straightforward improvement would be to rerun the same

experiments presented here, but averaged over multiple finetuning runs for each

model. The results here are for one finetuned model for each case, which means

that the resulting explanations may be affected by the particular solution found

during finetuning, rather than aspects of the architecture or data that we are inter-

ested in. Averaging over results from multiple models would help eliminate this

problem. Unfortunately, this approach is also quite computationally intensive,

which is why we used only one model per case. There are a total of twenty-

four models in these experiments, so n runs would require 24 × n total models,

a prohibitively large number when considering the time and compute required to

finetune the larger language models used here.

Further, isolating the impact of different components of language models on ex-
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planations would be useful as well. Training multiple identical transformers from

scratch (eliminating the pretraining objective) but changing one component at a

time, e.g. using different tokenization schemes or vocabularies for each model,

would help pinpoint the effect of those kinds of design decisions on explana-

tions. Considering the large disparities in explanation quality between the differ-

ent model architectures evaluated here, those decisions may have a large impact on

how faithful the resulting explanations are. The pretraining objectives themselves

also may have an impact on explanations. By comparing different pretraining

objectives for the same model (e.g. using masked vs. left-to-right language mod-

eling for a newly initialized BERT model), and then finetuning for specific tasks,

you could evaluate how the pretraining objective affects explanations. This would

be particularly useful for evaluating, for example, how the presence of a mask-

ing objective in pretraining impacts methods and metrics like LIME and SHAP or

Sufficiency and Comprehensiveness, which rely on masking out input features.

5.3 Conclusion

Feature importance explanations are broadly applicable to many different kinds

of machine learning models. In this work, we have specifically assessed their util-

ity for transformer language models, and particularly how the validity of different

methods changes across transformers of varying sizes and architectures. Increas-

ing the size of a model tends to have relatively little impact on the quality of the

resulting explanations, and methods that work well for small models appear to

work well for large models as well. Across different architectures of a similar

size, though, performance varies widely. Explanations for bidirectional and uni-

directional models were drastically different for both input perturbation methods

and attention methods, and the simplest gradient methods, Gradients and Gradi-
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ents*Input were ineffective across nearly all models. Integrated Gradients was the

most consistent of the methods, but still had significant variations in performance

across models and datasets. Considering how unpredictable the validity of dif-

ferent methods seems to be across different language models, applications using

these methods to justify or interpret LLMs need to extensively validate and com-

pare different explanation methods to ensure that the final method used produces

explanations that truly reflect the behavior of the underlying model.
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A | Additional Layer Randomization Figures

(a) T5 Tiny (b) T5 Mini

(c) T5 Small (d) T5 Base

Figure A.1: Spearman Correlations between explanations generated via cascading
layer randomization (Section 3.3). Layer randomization was applied to four T5
models of differing sizes finetuned on the MultiNLI dataset. The x axis is the
layers of each model. The y axis is the rank correlation between the original
explanation and the explanation produced by the same method when the model
has been randomized up to the corresponding layer on the x axis. Randomization
starts from the last layer and goes backward (from left to right in the graph).
Faithful explanations should have decreasing correlations (or decrease all the way
to zero) as layers of the model are randomized. High correlations indicate a lack
of sensitivity to model parameters (i.e. unfaithful explanations).
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(a) T5 Tiny (b) T5 Mini

(c) T5 Small (d) T5 Base

Figure A.2: Spearman Correlations between explanations generated via indepen-
dent layer randomization (Section 3.3). Independent layer randomization was ap-
plied to four different T5 models of increasing size finetuned on the MultiNLI
dataset. The x axis is the layers of each model. The y axis is the rank correla-
tion between the original explanation and the explanation produced by the same
method when the model parameters at the corresponding layer on the x axis have
been randomized. Faithful explanations should have low correlations for each
layer of the model except "Full", the original explanation on the far left.
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(a) T5 Tiny (b) T5 Mini

(c) T5 Small (d) T5 Base

Figure A.3: Spearman Correlations between explanations generated via cascading
layer randomization (Section 3.3). Layer randomization was applied to four T5
models of differing sizes finetuned on the e-SNLI dataset. The x axis is the layers
of each model. The y axis is the rank correlation between the original explana-
tion and the explanation produced by the same method when the model has been
randomized up to the corresponding layer on the x axis. Randomization starts
from the last layer and goes backward (from left to right in the graph). Faithful
explanations should have decreasing correlations (or decrease all the way to zero)
as layers of the model are randomized. High correlations indicate a lack of sensi-
tivity to model parameters (i.e. unfaithful explanations).
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(a) T5 Tiny (b) T5 Mini

(c) T5 Small (d) T5 Base

Figure A.4: Spearman Correlations between explanations generated via indepen-
dent layer randomization (Section 3.3). Independent layer randomization was
applied to four different T5 models of increasing size finetuned on the e-SNLI
dataset. The x axis is the layers of each model. The y axis is the rank correla-
tion between the original explanation and the explanation produced by the same
method when the model parameters at the corresponding layer on the x axis have
been randomized. Faithful explanations should have low correlations for each
layer of the model except "Full", the original explanation on the far left.
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(a) T5 Base (b) GPT2 Small

(c) RoBERTa Base (d) BERT Base

Figure A.5: Spearman Correlations between explanations generated via cascad-
ing layer randomization (Section 3.3). Layer randomization was applied to four
different pretrained models finetuned on the MultiNLI dataset. The x axis is the
layers of each model. The y axis is the rank correlation between the original ex-
planation and the explanation produced by the same method when the model has
been randomized up to the corresponding layer on the x axis. Randomization
starts from the last layer and goes backward (from left to right in the graph)
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(a) T5 Base (b) GPT2 Small

(c) RoBERTa Base (d) BERT Base

Figure A.6: Spearman Correlations between explanations generated via indepen-
dent layer randomization (Section 3.3). Independent layer randomization was ap-
plied to four different pretrained models finetuned on the MultiNLI dataset. The
x axis is the layers of each model. The y axis is the rank correlation between the
original explanation and the explanation produced by the same method when the
model parameters at the corresponding layer on the x axis have been randomized.
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(a) T5 Base (b) GPT2 Small

(c) RoBERTa Base (d) BERT Base

Figure A.7: Spearman Correlations between explanations generated via cascading
layer randomization (Section 3.3). Layer randomization was applied to four dif-
ferent pretrained models finetuned on the e-SNLI dataset. The x axis is the layers
of each model. The y axis is the rank correlation between the original explanation
and the explanation produced by the same method when the model has been ran-
domized up to the corresponding layer on the x axis. Randomization starts from
the last layer and goes backward (from left to right in the graph)
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(a) T5 Base (b) GPT2 Small

(c) RoBERTa Base (d) BERT Base

Figure A.8: Spearman Correlations between explanations generated via indepen-
dent layer randomization (Section 3.3). Independent layer randomization was ap-
plied to four different pretrained models finetuned on the e-SNLI dataset. The x
axis is the layers of each model. The y axis is the rank correlation between the
original explanation and the explanation produced by the same method when the
model parameters at the corresponding layer on the x axis have been randomized.
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B | Additional Ensemble Figures

(a) Comprehensiveness (b) Sufficiency

Figure B.1: Comprehensiveness and Sufficiency for ensemble explanations of
four T5 models of different sizes (finetuned on the MultiNLI dataset). LIME,
SHAP, and Integrated Gradients are included for comparison. The x axis is the
number of parameters in each model. The y axis is either the Comprehensive-
ness or Sufficiency value. Faithful explanations should have high Comprehen-
siveness and low Sufficiency values. The values are averaged over 500 examples
and shown with 95% confidence intervals.
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(a) Comprehensiveness (b) Sufficiency

Figure B.2: Comprehensiveness and Sufficiency for ensemble explanations of
four T5 models of different sizes (finetuned on the e-SNLI dataset). LIME, SHAP,
and Integrated Gradients are included for comparison. The x axis is the number
of parameters in each model. The y axis is either the Comprehensiveness or Suffi-
ciency value. Faithful explanations should have high Comprehensiveness and low
Sufficiency values. The values are averaged over 500 examples and shown with
95% confidence intervals.

(a) Comprehensiveness (b) Sufficiency

Figure B.3: Comprehensiveness and Sufficiency for ensemble explanations of
four different pretrained models (finetuned on the MultiNLI dataset). LIME,
SHAP, and Integrated Gradients are included for comparison. The x axis is the
name of each of the pretrained models. The y axis is either the Comprehensive-
ness or Sufficiency value. The values are averaged over 500 examples and shown
with black bars indicating 95% confidence intervals.
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(a) Comprehensiveness (b) Sufficiency

Figure B.4: Comprehensiveness and Sufficiency for ensemble explanations of
four different pretrained models (finetuned on the e-SNLI dataset). LIME, SHAP,
and Integrated Gradients are included for comparison. The x axis is the name of
each of the pretrained models. The y axis is either the Comprehensiveness or Suf-
ficiency value. The values are averaged over 500 examples and shown with black
bars indicating 95% confidence intervals.
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C | Additional Adversarial Example Figures
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Figure C.1: Rank Change and Top-k Sum Change values for adversarial examples
generated for explanations of four T5 models of different sizes (finetuned on the
MultiNLI dataset). The x axis is the number of parameters in each model. The
y axis is the Rank Change or Top-k Sum Change value. Adversarially robust
methods should have low Rank Change and Top-k Sum Change values. The solid
lines are values for examples generated using the unconstrained objective, and
the dotted lines are for examples generated using the constrained objective. The
values are averaged over 16 examples and shown with 95% confidence intervals.

Figure C.2: Probability Change values for adversarial examples generated for
explanations of four T5 models of different sizes (finetuned on the MultiNLI
dataset). The x axis is the number of parameters in each model. The y axis is
the Probability Change value. Lower values are preferable. The solid lines are
values for examples generated using the unconstrained objective, and the dotted
lines are for examples generated using the constrained objective. The values are
averaged over 16 examples and shown with 95% confidence intervals.
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Figure C.3: Rank Change and Top-k Sum Change values for adversarial examples
generated for explanations of four T5 models of different sizes (finetuned on the
e-SNLI dataset). The x axis is the number of parameters in each model. The y axis
is the Rank Change or Top-k Sum Change value. Adversarially robust methods
should have low Rank Change and Top-k Sum Change values. The solid lines are
values for examples generated using the unconstrained objective, and the dotted
lines are for examples generated using the constrained objective. The values are
averaged over 16 examples and shown with 95% confidence intervals.

Figure C.4: Probability Change values for adversarial examples generated for ex-
planations of four T5 models of different sizes (finetuned on the e-SNLI dataset).
The x axis is the number of parameters in each model. The y axis is the Proba-
bility Change value. Lower values are preferable. The solid lines are values for
examples generated using the unconstrained objective, and the dotted lines are for
examples generated using the constrained objective. The values are averaged over
16 examples and shown with 95% confidence intervals.
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(a) Constrained Top-k Sum
Change

(b) Unconstrained Top-k Sum
Change

Figure C.5: Top-k Sum Change values for adversarial examples generated for ex-
planations of four different pretrained models finetuned on the e-SNLI dataset.
The x axis is the name of each of the pretrained models. The y axis is the Top-k
Sum Change value. Robust explanations should have low values for Top-k Sum
Change. The values are averaged over 16 examples and shown black bars indicat-
ing 95% confidence intervals.

(a) Constrained Probability
Change

(b) Unconstrained Probability
Change

Figure C.6: Probability Change values for adversarial examples generated for ex-
planations of four different pretrained models finetuned on the e-SNLI dataset.
The x axis is the name of each of the pretrained models. The y axis is the Prob-
ability Change value. Lower values are preferable. The values are averaged over
16 examples and shown black bars indicating 95% confidence intervals.
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